Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Lett ; 263: 105-112, 2023 11.
Article in English | MEDLINE | ID: mdl-37683695

ABSTRACT

The significant number of deaths and infection caused by the new coronavirus SARS-CoV-2 has created an urgent demand for effective and readily available drugs for the treatment of COVID-19. However, the requirements for biosafety level 3 (NB-3) laboratories for experiments with the virus has made it very challenging for such research to meet this demand. It is known that angiotensin-converting enzyme 2 (ACE2), located on the surface of host cells, serves as the viral receptor for the spike (S) protein of SARS-CoV-2. This protein is a tetramer subdivided into S1 and S2 regions, with the former containing the receptor-binding domain (RBD). Therefore, drugs that interfere with the interaction between the spike and the receptor (as well as accessory proteins) or suppress their expression could inhibit the entry and spread of SARS-CoV-2 between cells. In this context, we standardized the use of recombinant SARS-CoV-2 S1 Protein with hFc (human Fc) for the analysis of binding in VERO E6 cells by flow cytometry, aiming to provide a new tool for identifying drugs and neutralizing antibodies, thus eliminating the need for NB-3 laboratories. Because minocycline (MCL), nimesulide (NMS), and berberine (BBR) have effects related to the ACE2 receptor, inhibit inflammation, and do not suppress the adaptive immune response (crucial for patient recovery), we investigated whether these drugs prevent the absorption of the spike protein into the host cell. For this purpose, we used VERO E6 cells under control conditions, pre-treated with these drugs and exposed to recombinant SARS-CoV-2 S1 Protein with hFC. We found that an exposure time of 30 min and a concentration of 10 µg/mL of spike S1 caused a strong signal detected by flow cytometry, using the secondary anti-hFc antibody conjugated with Alexa Fluor 647. Pre-treatment of cells with BBR for 30 min suppressed the signal from spike-positive cells, suggesting that this alkaloid interferes with spike adsorption on ACE2. The pre-incubation of spike protein with BBR did not alter its adsorption and internalization, indicating that BBR does not directly interact with spike protein. The ACE2 inactivation with a specific antibody inhibited spike protein adsorption and internalization. Furthermore, the pharmacological treatments did not alter the expression of ACE2. Exposure to spike protein increased IFNγ levels and the treatments with MCL and NMS were effective in inhibiting this increase. Taken together, we standardized a technique for analyzing the adsorption of SARS-CoV-2 and studying molecules that inhibit this process. Additionally, we demonstrated that BBR blocks spike entry bypre-binding to the host cell,and that the ACE2 receptor inactivation prevents Spike protein adsorption and penetration into cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adsorption , Protein Binding
2.
Neuroscience ; 502: 25-40, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36058342

ABSTRACT

BACKGROUND: Some studies have suggested that mitochondrial dysfunction and a superoxide imbalance could increase susceptibility to chronic stressful events, contributing to the establishment of chronic inflammation and the development of mood disorders. The mitochondrial superoxide imbalance induced by some molecules, such as rotenone, could be evolutionarily conserved, causing behavioral, immune, and neurological alterations in animals with a primitive central nervous system. OBJECTIVE: Behavioral, immune, and histological markers were analyzed in Eisenia fetida earthworms chronically exposed to rotenone for 14 days. METHODS: Earthworms were placed in artificial soil containing 30 nM of rotenone distributed into a plastic cup that allowed the earthworms to leave and return freely into the ground. Since these organisms prefer to be buried, the model predicted that the earthworms would necessarily have to return to the rotenone-contaminated medium, creating a stressful condition. The effect on survival behavior in the immune and histological body wall and ventral nervous ganglia (VNG) structures, as well as gene expression related to inflammation and mitochondrial and neuromuscular changes. RESULTS: Rotenone-induced loss of earthworm escape behavior and immune alterations indicated a chronic inflammatory state. Some histological changes in the body wall and VNG indicated a possible earthworm reaction aimed at protecting against rotenone. Overexpression of the nicotinic acetylcholine receptor gene (nAChR α5) in neural tissues could also help earthworms reduce the degenerative effects of rotenone on dopaminergic neurons. CONCLUSION: These data suggest that mitochondrial dysfunction could be an evolutionarily conserved element that induces inflammatory and behavioral changes related to chronic stress.


Subject(s)
Oligochaeta , Receptors, Nicotinic , Soil Pollutants , Animals , Oligochaeta/metabolism , Superoxides/metabolism , Superoxides/pharmacology , Rotenone/toxicity , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil Pollutants/pharmacology , Soil/chemistry , Plastics/metabolism , Plastics/pharmacology , Inflammation/chemically induced , Receptors, Nicotinic/metabolism
3.
Microb Pathog ; 132: 156-161, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31029718

ABSTRACT

Chagas disease (CD) affecting about 7 million people is caused by the flagellate protozoan Trypanosoma cruzi. The central nervous system (CNS) is an important site for T. cruzi persistence in the host during the chronic phase of infection, because the protozoan may pass the blood-brain barrier and may cause motor and cognitive neuronal damage. Thinking about avoiding or minimizing these negative effects, it is hypothesized that resveratrol (RSV), a component with several medicinal properties has beneficial effects on the CNS. The objective of this study was to investigate, whether T. cruzi infection interferes with neurogenesis and gliogenesis of embryos of infected mice females, and whether RSV would be able to avoid or minimize these changes caused by CD. RSV is a polyphenol found in grapes and widely studied for its neuroprotective and antioxidant properties. In addition, we investigated the role caused by the parasite during congenital infection and CNS development. Embryos and their brains were PCR-positive for T. cruzi. For this study, NPCs obtained from telencephalon of infected and uninfected embryos and were cultured in presence of resveratrol for forming neurospheres. The results demonstrated that the congenital transmission of T. cruzi influences CNS formation and neural fate, decreasing the number of neuroespheres and causing an elongation in the phases of the cell cycle. In addition, the parasite promoted an increase in neugliogenesis. Resveratrol was neuroprotective and prevented negative effects of the infection. Thus, we suggest the use of resveratrol as a therapeutic target for the treatment of neuroinflammation or as neuroprotective agent during Chagas disease, as it improves gliogenesis and restores neural migration.


Subject(s)
Cell Differentiation/drug effects , Neurons/drug effects , Resveratrol/pharmacology , Stem Cells/drug effects , Animals , Chagas Disease/drug therapy , Disease Models, Animal , Female , Mice , Neurogenesis/drug effects , Neurons/cytology , Stem Cells/metabolism , Trypanosoma cruzi
4.
Purinergic Signal ; 15(1): 77-84, 2019 03.
Article in English | MEDLINE | ID: mdl-30535987

ABSTRACT

The effects of Toxoplasma gondii during embryonic development have not been explored despite the predilection of this parasite for neurons and glial cells. Here, we investigated the activation of the purinergic system and proinflammatory responses during congenital infection by T. gondii. Moreover, neuroprotective and neuromodulatory properties of resveratrol (RSV), a polyphenolic natural compound, were studied in infected neuronal progenitor cells (NPCs). For this study, NPCs were isolated from the telencephalon of infected mouse embryos and subjected to neurosphere culture in the presence of EGF and FGF2. ATP hydrolysis and adenosine deamination by adenosine deaminase activity were altered in conditions of T. gondii infection. P2X7 and adenosine A2A receptor expression rates were augmented in infected NPCs together with an increase of proinflammatory (INF-γ and TNF-α) and anti-inflammatory (IL-10) cytokine gene expression. Our results confirm that RSV counteracted T. gondii-promoted effects on enzymes hydrolyzing extracellular nucleotides and nucleosides and also upregulated P2X7 and A2A receptor expression and activity, modulating INF-γ, TNF-α, and IL-10 cytokine production, which plays an integral role in the immune response against T. gondii.


Subject(s)
Antioxidants/pharmacology , Neural Stem Cells , Receptor, Adenosine A2A/metabolism , Receptors, Purinergic P2X7/metabolism , Resveratrol/pharmacology , Toxoplasmosis/metabolism , Animals , Female , Mice , Neural Stem Cells/drug effects , Neural Stem Cells/immunology , Neural Stem Cells/microbiology , Pregnancy , Prenatal Exposure Delayed Effects/microbiology , Purines/metabolism , Receptor, Adenosine A2A/immunology , Receptors, Purinergic P2X7/immunology , Toxoplasmosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...