Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Aging Mech Dis ; 7(1): 9, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33941782

ABSTRACT

Abnormal accumulation of hyperphosphorylated tau induces pathogenesis in neurodegenerative diseases, like Alzheimer's disease. Molecular chaperones with peptidyl-prolyl cis/trans isomerase (PPIase) activity are known to regulate these processes. Previously, in vitro studies have shown that the 52 kDa FK506-binding protein (FKBP52) interacts with tau inducing its oligomerization and fibril formation to promote toxicity. Thus, we hypothesized that increased expression of FKBP52 in the brains of tau transgenic mice would alter tau phosphorylation and neurofibrillary tangle formation ultimately leading to memory impairments. To test this, tau transgenic (rTg4510) and wild-type mice received bilateral hippocampal injections of virus overexpressing FKBP52 or GFP control. We examined hippocampal-dependent memory, synaptic plasticity, tau phosphorylation status, and neuronal health. This work revealed that rTg4510 mice overexpressing FKBP52 had impaired spatial learning, accompanied by long-term potentiation deficits and hippocampal neuronal loss, which was associated with a modest increase in total caspase 12. Together with previous studies, our findings suggest that FKBP52 may sensitize neurons to tau-mediated dysfunction via activation of a caspase-dependent pathway, contributing to memory and learning impairments.

2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751642

ABSTRACT

Misfolding, aggregation and accumulation of proteins are toxic elements in the progression of a broad range of neurodegenerative diseases. Molecular chaperones enable a cellular defense by reducing or compartmentalizing these insults. Small heat shock proteins (sHsps) engage proteins early in the process of misfolding and can facilitate their proper folding or refolding, sequestration, or clearance. Here, we evaluate the effects of the sHsp Hsp22, as well as a pseudophosphorylated mutant and an N-terminal domain deletion (NTDΔ) variant on tau aggregation in vitro and tau accumulation and aggregation in cultured cells. Hsp22 wild-type (WT) protein had a significant inhibitory effect on heparin-induced aggregation in vitro and the pseudophosphorylated mutant Hsp22 demonstrated a similar effect. When co-expressed in a cell culture model with tau, these Hsp22 constructs significantly reduced soluble tau protein levels when transfected at a high ratio relative to tau. However, the Hsp22 NTDΔ protein drastically reduced the soluble protein expression levels of both tau WT and tau P301L/S320F even at lower transfection ratios, which resulted in a correlative reduction of the triton-insoluble tau P301L/S320F aggregates.


Subject(s)
Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , tau Proteins/genetics , Animals , Gene Expression Regulation/genetics , Heat-Shock Proteins, Small/genetics , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/pathology , Protein Aggregation, Pathological/genetics , Protein Binding/genetics , Proteostasis Deficiencies/genetics
3.
FEMS Yeast Res ; 16(7)2016 11.
Article in English | MEDLINE | ID: mdl-27650705

ABSTRACT

The fungal pathogen Candida glabrata is a haploid asexual yeast. Candida glabrata contains orthologs of the genes that control mating and cell-type identity in other fungi, which encode putative transcription factors localized in the MAT locus in Saccharomyces cerevisiae or MTL in other fungi. Candida glabrata contains three copies of the CgMTL locus but only CgMTL1 correctly expresses the information encoded in it. CgMTL1 can encode the Cg A1: gene ( A: information), or the Cgalpha1 and Cgalpha2 genes (alpha information). CgMTL2 contains an identical copy of the Cg A1: gene. CgMTL3 contains an identical copy of the Cgalpha1 gene but a longer variant of the Cgalpha2 gene that we termed Cgalpha3. In S. cerevisiae diploid cells, that express Sc A: and Scalpha information, Sc A1: and Scalpha2 proteins form a heterodimer, which represses genes expressed only in haploid cells and some genes involved in stress response. We constructed C. glabrata strains that simultaneously express Cg A1: and Cgalpha2 or Cg A1: and Cgalpha3 genes. We did not find any phenotype in these strains when grown under a large variety of stress and nutritional conditions. However, we detected an interaction between Cg A1: and Cgalpha2 but not between Cg A1: and Cgalpha3 by Bimolecular Fluorescence Complementation and co-immunoprecipitation assays.


Subject(s)
Candida glabrata/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Mating Type, Fungal , Genetic Loci , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...