Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37258039

ABSTRACT

BACKGROUND: An increased incidence of thrombotic complications associated with an increased mortality rate has been observed under immune checkpoint inhibition (ICI). Recent investigations on the coagulation pathways have highlighted the direct role of key coagulatory proteins and platelets in cancer initiation, angiogenesis and progression. The aim of this study was to evaluate the prognostic value of von Willebrand factor (vWF) and its regulatory enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), D-dimers and platelets in a cohort of patients with metastatic melanoma receiving ICI. METHODS: In a prospective cohort of 83 patients with metastatic melanoma, we measured the systemic levels of vWF-antigen (vWF:Ag), ADAMTS13 activity, D-dimers and platelets, before the beginning of the treatment (baseline), and 6, 12 and 24 weeks after. In parallel, we collected standard biological parameters used in clinical routine to monitor melanoma response (lactate deshydrogenase (LDH), S100). The impact of neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) on overall survival (OS) in patients receiving ICI was assessed. Univariable and multivariable Cox proportional models were then used to investigate any potential association of these parameters to clinical progression (progression-free survival (PFS) and OS). Baseline values and variations over therapy course were compared between primary responders and resistant patients. RESULTS: Patients with melanoma present with dysregulated levels of vWF:Ag, ADAMTS13 activity, D-dimers, LDH, S100 and CRP at the beginning of treatment. With a median clinical follow-up of 26 months, vWF:Ag interrogated as a continuous variable was significantly associated with PFS in univariate and multivariate analysis (HR=1.04; p=0.007). Lower values of vWF:Ag at baseline were observed in the primary responders group (median: 29.4 µg/mL vs 32.9 µg/mL; p=0.048) when compared with primary resistant patients. As for OS, we found an association with D-dimers and ADAMTS13 activity in univariate analysis and vWF:Ag in univariate and multivariate analysis including v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation and Eastern Cooperative Oncology Group (ECOG) performance status. Follow-up over the course of treatment depicts different evolution profiles for vWF:Ag between the primary response and resistance groups. CONCLUSIONS: In this prospective cohort, coagulatory parameters such as ADAMTS13 activity and D-dimers are associated with OS but baseline vWF:Ag levels appeared as the only parameter associated with response and OS to ICI. This highlights a potential role of vWF as a biomarker to monitor ICI response of patients with malignant melanoma.


Subject(s)
Melanoma , von Willebrand Factor , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/drug therapy , Prognosis , Prospective Studies , von Willebrand Factor/metabolism
2.
Ann N Y Acad Sci ; 1517(1): 251-265, 2022 11.
Article in English | MEDLINE | ID: mdl-35994210

ABSTRACT

Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.


Subject(s)
Claudins , Epidermis , Humans , Claudins/metabolism , Claudin-1/metabolism , Claudin-4/metabolism , Epidermis/metabolism , Permeability , Tight Junctions/metabolism , Claudin-5/metabolism
3.
Front Immunol ; 13: 1078891, 2022.
Article in English | MEDLINE | ID: mdl-36591269

ABSTRACT

Introduction: The intravascular formation of neutrophil extracellular traps (NETs) is a trigger for coagulation and blood vessel occlusion. NETs are released from neutrophils as a response to strong inflammatory signals in the course of different diseases such as COVID-19, cancer or antiphospholipid syndrome. NETs are composed of large, chromosomal DNA fibers decorated with a variety of proteins such as histones. Previous research suggested a close mechanistic crosstalk between NETs and the coagulation system involving the coagulation factor XII (FXII), von Willebrand factor (VWF) and tissue factor. However, the direct impact of NET-related DNA fibers on blood flow and blood aggregation independent of the coagulation cascade has remained elusive. Methods: In the present study, we used different microfluidic setups in combination with fluorescence microscopy to investigate the influence of neutrophil-derived extracellular DNA fibers on blood rheology, intravascular occlusion and activation of the complement system. Results: We found that extended DNA fiber networks decelerate blood flow and promote intravascular occlusion of blood vessels independent of the plasmatic coagulation. Associated with the DNA dependent occlusion of the flow channel was the strong activation of the complement system characterized by the production of complement component 5a (C5a). Vice versa, we detected that the local activation of the complement system at the vascular wall was a trigger for NET release. Discussion: In conclusion, we found that DNA fibers as the principal component of NETs are sufficient to induce blood aggregation even in the absence of the coagulation system. Moreover, we discovered that complement activation at the endothelial surface promoted NET formation. Our data envisions DNA degradation and complement inhibition as potential therapeutic strategies in NET-induced coagulopathies.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Extracellular Traps/metabolism , COVID-19/metabolism , Neutrophils/metabolism , DNA/metabolism , Complement Activation
4.
Allergy ; 76(10): 3094-3106, 2021 10.
Article in English | MEDLINE | ID: mdl-33844311

ABSTRACT

BACKGROUND: Expression of the tight junction proteins Cldn1 and 4 is altered in skin diseases such as atopic dermatitis, and Cldn1 deficiency affects skin barrier formation. Impedance spectroscopy (IS) has been proven to allow detection of alterations in the skin barrier but is currently unable to separate effects on viable epidermis (VE) and stratum corneum (SC). METHODS: Effects of siRNA-mediated Cldn1 and 4 knockdown in reconstructed human epidermis (RHE) on VE and SC barrier function were investigated with Ussing chamber-based IS. Barrier components were sequentially altered, employing iron oxide nanoparticles and EGTA, to identify their contribution to the impedance spectrum. Resistance changes due to apically applied hyperosmolar electrolyte were used to identify barrier defects non-invasively. RESULTS: IS of RHE yielded two relaxation frequencies, representing the barrier properties of the SC (~1000 Hz) and VE (~100 Hz). As proof of concept, it was shown that the Cldn1 knockdown-induced resistance drop arises from the impairment of both SC and VE, indicated by a shift of both relaxation frequencies. Hyperosmolar electrolyte penetration allowed non-invasive detection of Cldn1 knockdown via time-dependent frequency shifts. The absence of Cldn4 knockdown-induced changes revealed the weaknesses of transepithelial electrical resistance analysis. CONCLUSION: In conclusion, the present technique allows to separately measure the barrier properties of SC and VE and further evaluate the Cldn1 and 4 knockdown impact on the skin barrier. As the measurement with agarose-embedded electrolyte allowed non-invasive identification of the Cldn1 knockdown, this opens the way to detailed in vivo skin barrier assessment.


Subject(s)
Dermatitis, Atopic , Dielectric Spectroscopy , Epidermal Cells , Epidermis , Humans , Skin , Tight Junctions
5.
Mol Cancer Res ; 18(7): 1099-1109, 2020 07.
Article in English | MEDLINE | ID: mdl-32234826

ABSTRACT

Cancer-related venous thromboembolisms (VTE) are associated with metastasis and reduced survival in patients with urothelial cancer of the bladder. Although previous reports suggest the contribution of tissue factor and podoplanin, the mechanistic linkage between VTE and bladder cancer cell-derived molecules is unknown. Therefore, we compared distinct procoagulant pathways in four different cell lines. In vitro findings were further confirmed by microfluidic experiments mimicking the pathophysiology of tumor blood vessels and in tissue samples of patients with bladder cancer by transcriptome analysis and immunohistology. In vitro and microfluidic experiments identified bladder cancer-derived VEGF-A as highly procoagulant because it promoted the release of von Willebrand factor (VWF) from endothelial cells and thus platelet aggregation. In tissue sections from patients with bladder cancer, we found that VWF-mediated blood vessel occlusions were associated with a poor outcome. Transcriptome data further indicate that elevated expression levels of enzymes modulating VEGF-A availability were significantly connected to a decreased survival in patients with bladder cancer. In comparison with previously postulated molecular players, we identified tumor cell-derived VEGF-A and endothelial VWF as procoagulant mediators in bladder cancer. Therapeutic strategies that prevent the VEGF-A-mediated release of VWF may reduce tumor-associated hypercoagulation and metastasis in patients with bladder cancer. IMPLICATIONS: We identified the VEGF-A-mediated release of VWF from endothelial cells to be associated with bladder cancer progression.


Subject(s)
Carcinoma, Transitional Cell/metabolism , Endothelial Cells/cytology , Urinary Bladder Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolism , Carcinoma, Transitional Cell/genetics , Cell Line, Tumor , Disease Progression , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Human Umbilical Vein Endothelial Cells , Humans , Microfluidic Analytical Techniques , Neoplasm Metastasis , Proteomics , Urinary Bladder Neoplasms/genetics
6.
Sci Rep ; 10(1): 2024, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029783

ABSTRACT

The transmembrane protein claudin-1 is a major component of epidermal tight junctions (TJs), which create a dynamic paracellular barrier in the epidermis. Claudin-1 downregulation has been linked to atopic dermatitis (AD) pathogenesis but variable levels of claudin-1 have also been observed in healthy skin. To elucidate the impact of different levels of claudin-1 in healthy and diseased skin we determined claudin-1 levels in AD patients and controls and correlated them to TJ and skin barrier function. We observed a strikingly broad range of claudin-1 levels with stable TJ and overall skin barrier function in healthy and non-lesional skin. However, a significant decrease in TJ barrier function was detected in lesional AD skin where claudin-1 levels were further reduced. Investigations on reconstructed human epidermis expressing different levels of claudin-1 revealed that claudin-1 levels correlated with inside-out and outside-in barrier function, with a higher coherence for smaller molecular tracers. Claudin-1 decrease induced keratinocyte-autonomous IL-1ß expression and fostered inflammatory epidermal responses to non-pathogenic Staphylococci. In conclusion, claudin-1 decrease beyond a threshold level results in TJ and epidermal barrier function impairment and induces inflammation in human epidermis. Increasing claudin-1 levels might improve barrier function and decrease inflammation and therefore be a target for AD treatment.


Subject(s)
Claudin-1/metabolism , Dermatitis, Atopic/immunology , Epidermis/pathology , Tight Junctions/pathology , Adult , Biopsy , Case-Control Studies , Cells, Cultured , Claudin-1/analysis , Claudin-1/genetics , Dermatitis, Atopic/microbiology , Dermatitis, Atopic/pathology , Down-Regulation , Epidermis/immunology , Epidermis/microbiology , Female , Gene Knockdown Techniques , Healthy Volunteers , Humans , Interleukin-1beta/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Male , Middle Aged , Primary Cell Culture , Staphylococcus/immunology , Staphylococcus/isolation & purification , Water Loss, Insensible/immunology , Young Adult
7.
Sci Rep ; 10(1): 22443, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33384430

ABSTRACT

The glycocalyx regulates the interaction of mammalian cells with extracellular molecules, such as cytokines. However, it is unknown to which extend the glycocalyx of distinct cancer cells control the binding and uptake of nanoparticles. In the present study, exome sequencing data of cancer patients and analysis of distinct melanoma and bladder cancer cell lines suggested differences in cancer cell-exposed glycocalyx components such as heparan sulphate. Our data indicate that glycocalyx differences affected the binding of cationic chitosan nanocapsules (Chi-NCs). The pronounced glycocalyx of bladder cancer cells enhanced the internalisation of nanoencapsulated capsaicin. Consequently, capsaicin induced apoptosis in the cancer cells, but not in the less glycosylated benign urothelial cells. Moreover, we measured counterion condensation on highly negatively charged heparan sulphate chains. Counterion condensation triggered a cooperative binding of Chi-NCs, characterised by a weak binding rate at low Chi-NC doses and a strongly increased binding rate at high Chi-NC concentrations. Our results indicate that the glycocalyx of tumour cells controls the binding and biological activity of nanoparticles. This has to be considered for the design of tumour cell directed nanocarriers to improve the delivery of cytotoxic drugs. Differential nanoparticle binding may also be useful to discriminate tumour cells from healthy cells.


Subject(s)
Antipruritics/administration & dosage , Antipruritics/pharmacokinetics , Capsaicin/administration & dosage , Capsaicin/pharmacokinetics , Chitosan/chemistry , Glycocalyx/metabolism , Nanocapsules/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heparitin Sulfate/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Organ Specificity , Protein Binding , Static Electricity , Theranostic Nanomedicine
8.
Int J Mol Sci ; 20(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561440

ABSTRACT

Claudins regulate paracellular permeability in different tissues. The claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) is a known modulator of a claudin subset. However, it does not efficiently bind to claudin-1 (Cldn1). Cldn1 is a pharmacological target since it is (i) an essential co-receptor for hepatitis C virus (HCV) infections and (ii) a key element of the epidermal barrier limiting drug delivery. In this study, we investigated the potential of a Cldn1-binding cCPE mutant (i) to inhibit HCV entry into hepatocytes and (ii) to open the epidermal barrier. Inhibition of HCV infection by blocking of Cldn1 with cCPE variants was analyzed in the Huh7.5 hepatoma cell line. A model of reconstructed human epidermis was used to investigate modulation of the epidermal barrier by cCPE variants. In contrast to cCPEwt, the Cldn1-binding cCPE-S305P/S307R/S313H inhibited infection of Huh7.5 cells with HCV in a dose-dependent manner. In addition, TJ modulation by cCPE variant-mediated targeting of Cldn1 and Cldn4 opened the epidermal barrier in reconstructed human epidermis. cCPE variants are potent claudin modulators. They can be applied for mechanistic in vitro studies and might also be used as biologics for therapeutic claudin targeting including HCV treatment (host-targeting antivirals) and improvement of drug delivery.


Subject(s)
Claudins/metabolism , Enterotoxins/metabolism , Hepatocytes/metabolism , Skin/metabolism , Amino Acid Substitution , Cell Line, Tumor , Claudins/chemistry , Enterotoxins/chemistry , Enterotoxins/pharmacology , Epidermis/metabolism , Hepacivirus/drug effects , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Humans , Models, Molecular , Molecular Conformation , Protein Binding , Skin/cytology , Virus Internalization/drug effects , Virus Replication
9.
Blood Adv ; 2(18): 2347-2357, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30237293

ABSTRACT

The dynamic change from a globular conformation to an elongated fiber determines the ability of von Willebrand factor (VWF) to trap platelets. Fiber formation is favored by the anchorage of VWF to the endothelial cell surface, and VWF-platelet aggregates on the endothelium contribute to inflammation, infection, and tumor progression. Although P-selectin and ανß3-integrins may bind VWF, their precise role is unclear, and additional binding partners have been proposed. In the present study, we evaluated whether the endothelial glycocalyx anchors VWF fibers to the endothelium. Using microfluidic experiments, we showed that stabilization of the endothelial glycocalyx by chitosan oligosaccharides or overexpression of syndecan-1 (SDC-1) significantly supports the binding of VWF fibers to endothelial cells. Heparinase-mediated degradation or impaired synthesis of heparan sulfate (HS), a major component of the endothelial glycocalyx, reduces VWF fiber-dependent platelet recruitment. Molecular interaction studies using flow cytometry and live-cell fluorescence microscopy provided further evidence that VWF binds to HS linked to SDC-1. In a murine melanoma model, we found that protection of the endothelial glycocalyx through the silencing of heparanase increases the number of VWF fibers attached to the wall of tumor blood vessels. In conclusion, we identified HS chains as a relevant binding factor for VWF fibers at the endothelial cell surface in vitro and in vivo.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Glycocalyx/metabolism , von Willebrand Factor/metabolism , Animals , Blood Platelets/metabolism , Female , Gene Expression , Humans , Mice , Platelet Adhesiveness , Protein Binding , Protein Transport , Syndecan-1/metabolism
10.
Sci Rep ; 8(1): 12800, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143655

ABSTRACT

Barrier function of hair follicles (HFs) is of great interest because they might be an entry port for allergens/pathogens, but could on the other hand be used for drug delivery or vaccination. Therefore we investigated tight junction (TJ) barrier function in human HFs. We show that there is a TJ barrier in the outermost living layer bordering to the environment from the infundibulum to the lower central part and between Henle's and Huxles layer of anagen HFs. In club hair typical for catagen and telogen HFs a TJ barrier is found surrounding the club. This demonstrates that there is a continuous TJ barrier along interfollicular epidermis and HFs in different phases of HF cycle. However, interestingly, in cell culture experiments we can show that barrier is less tight in HF keratinocytes compared to interfollicular keratinocytes. Knock-down of the TJ protein claudin-1, which we demonstrate here to be less expressed in HFs of lesional atopic dermatitis skin, results in impaired barrier function, decreased proliferation and increased apoptosis of hair keratinocytes. This is in line with a hair growth phenotype in claudin-1 deficient patients (NISCH syndrome) and corresponding knock-out mice and indicates an important role of claudin-1 in HF barrier function and growth.


Subject(s)
Claudin-1/metabolism , Hair Follicle/metabolism , Tight Junctions/metabolism , Apoptosis , Biomarkers/metabolism , Calcium/metabolism , Cell Differentiation , Cell Proliferation , Claudin-4/metabolism , Dermatitis, Atopic/pathology , Epidermis/metabolism , Extracellular Space/metabolism , Female , Hair Follicle/cytology , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Male , Middle Aged
11.
Ann N Y Acad Sci ; 1405(1): 53-70, 2017 10.
Article in English | MEDLINE | ID: mdl-28753223

ABSTRACT

Bacterial infections (e.g., with Staphylococcus aureus) are serious problems in skin with a compromised barrier, such as in patients with atopic dermatitis. Previously, it was shown that tight junction (TJ) proteins are influenced by staphylococcal infection, and TJ function is impaired after infection of the keratinocyte cell line HaCaT. However, functional studies in cells or models more similar to human skin are missing. Therefore, we investigated bacterial colonialization and infection with live S. aureus in primary human keratinocytes and reconstructed human epidermis (RHE). We show that short-term inoculation results in increased TJ barrier function-which could not be seen in HaCaT cells-hinting at an early protective effect. This is accompanied by occludin phosphorylation and sustained localization of occludin and claudin-4 at cell membranes. Long-term incubation resulted in decreased presence of claudin-1 and claudin-4 at cell membranes and decreased TJ barrier function. The agr regulon of S. aureus plays a role in the increasing but not in the decreasing effect. Proinflammatory cytokines, which are produced as a result of S. aureus inoculation, influence both phases. In summary, we show here that S. aureus can have short-term promoting effects on the TJ barrier, while in the long term it results in disturbance of TJs.


Subject(s)
Cell Membrane/microbiology , Epidermis/microbiology , Keratinocytes/microbiology , Staphylococcus aureus , Tight Junctions/microbiology , Cell Membrane/metabolism , Cell Membrane Permeability/physiology , Claudin-1/metabolism , Claudin-4/metabolism , Epidermis/metabolism , Humans , Keratinocytes/metabolism , Occludin/metabolism , Phosphorylation , Staphylococcal Infections/metabolism , Tight Junctions/metabolism
12.
Am J Pathol ; 187(6): 1301-1312, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28412298

ABSTRACT

Tight junction (TJ) proteins are known to be involved in proliferation and differentiation. These processes are essential for normal skin wound healing. Here, we investigated the TJ proteins claudin-1 and occludin in ex vivo skin wound healing models and tissue samples of acute and chronic human wounds and observed major differences in localization/expression of these proteins, with chronic wounds often showing a loss of the proteins at the wound margins and/or in the regenerating epidermis. Knockdown experiments in primary human keratinocytes showed that decreased claudin-1 expression resulted in significantly impaired scratch wound healing, with delayed migration and reduced proliferation. Activation of AKT pathway was significantly attenuated after claudin-1 knockdown, and protein levels of extracellular signal-related kinase 1/2 were reduced. For occludin, down-regulation had no impact on wound healing in normal scratch assays, but after subjecting the cells to mechanical stress, which is normally present in wounds, wound healing was impaired. For both proteins we show that most of these actions are independent from the formation of barrier-forming TJ structures, thus demonstrating nonbarrier-related functions of TJ proteins in the skin. However, for claudin-1 effects on scratch wound healing were more pronounced when TJs could form. Together, our findings provide evidence for a role of claudin-1 and occludin in epidermal regeneration with potential clinical importance.


Subject(s)
Claudin-1/physiology , Occludin/physiology , Skin/injuries , Wound Healing/physiology , Acute Disease , Adult , Aged , Aged, 80 and over , Animals , Calcium/physiology , Cell Movement/physiology , Cell Proliferation , Cells, Cultured , Chronic Disease , Claudin-1/genetics , Claudin-1/metabolism , Down-Regulation/physiology , Humans , Infant , MAP Kinase Signaling System/physiology , Middle Aged , Occludin/metabolism , Skin/metabolism , Skin/pathology , Skin Ulcer/metabolism , Skin Ulcer/pathology , Sus scrofa , Tight Junctions/metabolism
13.
PLoS One ; 12(1): e0169028, 2017.
Article in English | MEDLINE | ID: mdl-28046026

ABSTRACT

Diabetes mellitus is a frequent cause for chronic, difficult-to-treat wounds. New therapies for diabetic wounds are urgently needed and in-vitro or ex-vivo test systems are essential for the initial identification of new active molecules. The aim of this study is to compare in-vitro and ex-vivo test systems for their usability for early drug screening and to investigate the efficacy of a birch bark triterpene extract (TE) that has been proven ex-vivo and clinically to accelerate non-diabetic wound healing (WH), in a diabetic context. We investigated in-vitro models for diabetic WH, i.e. scratch assays with human keratinocytes from diabetic donors or cultured under hyperglycaemic conditions and a newly developed porcine ex-vivo hyperglycaemic WH model for their potential to mimic delayed diabetic WH and for the influence of TE in these test systems. We show that keratinocytes from diabetic donors often fail to exhibit significantly delayed WH. For cells under hyperglycaemic conditions significant decrease is observed but is influenced by choice of medium and presence of supplements. Also, donor age plays a role. Interestingly, hyperglycaemic effects are mainly hyperosmolaric effects in scratch assays. Ex-vivo models under hyperglycaemic conditions show a clear and substantial decrease of WH, and here both glucose and hyperosmolarity effects are involved. Finally, we provide evidence that TE is also beneficial for ex-vivo hyperglycaemic WH, resulting in significantly increased length of regenerated epidermis to 188±16% and 183±11% (SEM; p<0.05) compared to controls when using two different TE formulations. In conclusion, our results suggest that microenvironmental influences are important in WH test systems and that therefore the more complex hyperglycaemic ex-vivo model is more suitable for early drug screening. Limitations of the in-vitro and ex-vivo models are discussed. Furthermore our data recommend TE as a promising candidate for in-vivo testings in diabetic wounds.


Subject(s)
Diabetes Mellitus/drug therapy , Diabetes Mellitus/pathology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Wound Healing/drug effects , Adult , Aged , Aged, 80 and over , Animals , Child, Preschool , Cytokines/metabolism , Epithelium/drug effects , Epithelium/pathology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Glucose/pharmacology , Humans , Hyperglycemia/complications , Hyperglycemia/drug therapy , Keratinocytes/drug effects , Keratinocytes/pathology , Male , Sus scrofa
14.
Am J Pathol ; 185(10): 2777-89, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26319240

ABSTRACT

Tight junctions are important for skin barrier function. The tight junction protein claudin 1 (Cldn-1) has been reported to be down-regulated in nonlesional skin of atopic dermatitis (AD) patients. In contrast, we did not observe a significant down-regulation of Cldn-1 in nonlesional skin of the AD cohort used in this study. However, for the first time, a significant down-regulation of Cldn-1 in the upper and lower epidermal layers of lesional skin was detected. In addition, there was a significant up-regulation of Cldn-4 in nonlesional, but not lesional, AD skin. For occludin, no significant alterations were observed. In an AD-like allergic dermatitis mouse model, Cldn-1 down-regulation in eczema was significantly influenced by dermal inflammation, and significantly correlated with hallmarks of eczema (ie, increased keratinocyte proliferation, altered keratinocyte differentiation, increased epidermal thickness, and impaired barrier function). In human epidermal equivalents, the addition of IL-4, IL-13, and IL-31 resulted in a down-regulation of Cldn-1, and Cldn1 knockdown in keratinocytes resulted in abnormal differentiation. In summary, we provide the first evidence that Cldn-1 and Cldn-4 are differentially involved in AD pathogenesis. Our data suggest a role of Cldn-1 in AD eczema formation triggered by inflammation.


Subject(s)
Claudin-1/metabolism , Claudin-4/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Keratinocytes/pathology , Adult , Down-Regulation , Female , Humans , Interleukin-13/genetics , Male , Skin/metabolism , Skin/pathology
15.
PLoS One ; 9(1): e86147, 2014.
Article in English | MEDLINE | ID: mdl-24465925

ABSTRACT

BACKGROUND: Birch bark has a long lasting history as a traditional medicinal remedy to accelerate wound healing. Recently, the efficacy of birch bark preparations has also been proven clinically. As active principle pentacyclic triterpenes are generally accepted. Here, we report a comprehensive study on the underlying molecular mechanisms of the wound healing properties of a well-defined birch bark preparation named as TE (triterpene extract) as well as the isolated single triterpenes in human primary keratinocytes and porcine ex-vivo wound healing models. METHODOLOGY/PRINCIPAL FINDINGS: We show positive wound healing effects of TE and betulin in scratch assay experiments with primary human keratinocytes and in a porcine ex-vivo wound healing model (WHM). Mechanistical studies elucidate that TE and betulin transiently upregulate pro-inflammatory cytokines, chemokines and cyclooxygenase-2 on gene and protein level. For COX-2 and IL-6 this increase of mRNA is due to an mRNA stabilizing effect of TE and betulin, a process in which p38 MAPK and HuR are involved. TE promotes keratinocyte migration, putatively by increasing the formation of actin filopodia, lamellipodia and stress fibers. Detailed analyses show that the TE components betulin, lupeol and erythrodiol exert this effect even in nanomolar concentrations. Targeting the actin cytoskeleton is dependent on the activation of Rho GTPases. CONCLUSION/SIGNIFICANCE: Our results provide insights to understand the molecular mechanism of the clinically proven wound healing effect of birch bark. TE and betulin address the inflammatory phase of wound healing by transient up-regulation of several pro-inflammatory mediators. Further, they enhance migration of keratinocytes, which is essential in the second phase of wound healing. Our results, together with the clinically proven efficacy, identify birch bark as the first medical plant with a high potential to improve wound healing, a field which urgently needs effective remedies.


Subject(s)
Betula/chemistry , Plant Bark/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Wound Healing/drug effects , Actins/metabolism , Animals , Cell Movement/drug effects , Cell Proliferation , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , ELAV Proteins/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , NF-kappa B/metabolism , Plant Extracts/chemistry , RNA Stability/drug effects , RNA, Messenger/genetics , STAT3 Transcription Factor/metabolism , Skin/drug effects , Skin/metabolism , Swine , Triterpenes/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , rho GTP-Binding Proteins/metabolism
16.
PLoS One ; 8(2): e55116, 2013.
Article in English | MEDLINE | ID: mdl-23390516

ABSTRACT

Tight junction (TJ) proteins are involved in a number of cellular functions, including paracellular barrier formation, cell polarization, differentiation, and proliferation. Altered expression of TJ proteins was reported in various epithelial tumors. Here, we used tissue samples of human cutaneous squamous cell carcinoma (SCC), its precursor tumors, as well as sun-exposed and non-sun-exposed skin as a model system to investigate TJ protein alteration at various stages of tumorigenesis. We identified that a broader localization of zonula occludens protein (ZO)-1 and claudin-4 (Cldn-4) as well as downregulation of Cldn-1 in deeper epidermal layers is a frequent event in all the tumor entities as well as in sun-exposed skin, suggesting that these changes result from chronic UV irradiation. In contrast, SCC could be distinguished from the precursor tumors and sun-exposed skin by a frequent complete loss of occludin (Ocln). To elucidate the impact of down-regulation of Ocln, we performed Ocln siRNA experiments in human keratinocytes and uncovered that Ocln downregulation results in decreased epithelial cell-cell adhesion and reduced susceptibility to apoptosis induction by UVB or TNF-related apoptosis-inducing ligand (TRAIL), cellular characteristics for tumorigenesis. Furthermore, an influence on epidermal differentiation was observed, while there was no change of E-cadherin and vimentin, markers for epithelial-mesenchymal transition. Ocln knock-down altered Ca(2+)-homeostasis which may contribute to alterations of cell-cell adhesion and differentiation. As downregulation of Ocln is also seen in SCC derived from other tissues, as well as in other carcinomas, we suggest this as a common principle in tumor pathogenesis, which may be used as a target for therapeutic intervention.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cell Transformation, Neoplastic/radiation effects , Epithelial-Mesenchymal Transition/radiation effects , Gene Expression Regulation, Neoplastic/radiation effects , Keratinocytes/radiation effects , Occludin/genetics , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Calcium/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Adhesion/radiation effects , Cell Differentiation/radiation effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Claudins/genetics , Claudins/metabolism , Female , Homeostasis/radiation effects , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Male , Middle Aged , Neoplasm Grading , Occludin/antagonists & inhibitors , Occludin/metabolism , RNA, Small Interfering/genetics , Signal Transduction/radiation effects , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tight Junctions/metabolism , Tight Junctions/pathology , Tight Junctions/radiation effects , Young Adult , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...