Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 231(10): 1638-45, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17060685

ABSTRACT

The anticancer drug cisplatin can cause permanent inner ear damage. We have determined the second-order degradation rate constant, k(Nu), of cisplatin and its more toxic monohydrated complex (MHC) in the presence of each of the sulfur-containing nucleophiles N-acetyl-l-cysteine, l-cysteine methyl ester, 1,3-dimethyl-2-thiourea, d-methionine, and thiosulfate, compounds that are under evaluation for local administration to prevent cisplatin-induced ototoxicity. MHC was isolated from a hydrolysis solution of cisplatin using liquid chromatography (LC). The degradations were evaluated by measuring the disappearance of MHC and cisplatin at 37 degrees C and pH 7.4 in the presence of each of the nucleophiles using LC and photometric detection. The k(Nu) of MHC and of cisplatin was 0.044 M(-1)sec(-1) and 0.012 M(-1)sec(-1) with N-acetyl-l-cysteine, 0.24 M(-1)sec(-1) and 0.067 M(-1)sec(-1) with l-cysteine methyl ester, 0.16 M(-1)sec(-1) and 0.074 M(-1)sec(-1) with 1,3-dimethyl-2-thiourea, 0.070 M(-1)sec(-1) and 0.069 M(-1)sec(-1) with d-methionine, and 3.9 M(-1)sec(-1) and 0.091 M(-1)sec(-1) with thiosulfate, respectively. Our results suggest that thiosulfate, as being the strongest nucleophile, is a promising candidate for local application in order to reduce the inner ear content of MHC and cisplatin. However, otoprotection is a multifactorial event, and it remains to be established how important nucleophilicity is for the effectiveness of the protecting agent.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cisplatin/chemistry , Cisplatin/pharmacokinetics , Ear, Inner/drug effects , Sulfur Compounds/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Chromatography, Liquid , Cisplatin/toxicity , Dose-Response Relationship, Drug , Ear, Inner/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Regression Analysis , Sulfur Compounds/chemistry , Sulfur Compounds/toxicity , Temperature , Thiosulfates/chemistry , Thiosulfates/pharmacokinetics , Thiosulfates/toxicity
2.
J Pharm Sci ; 91(10): 2116-21, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12226839

ABSTRACT

The alkaline degradation of the chemotherapeutic agent oxaliplatin has been studied using liquid chromatography. The oxalato ligand is lost in two consecutive steps. First, the oxalato ring is opened, forming an oxalato monodentate intermediate, as identified by electrospray ionization mass spectrometry. Subsequently, the oxalato ligand is lost and the dihydrated oxaliplatin complex is formed. The observed rate constants for the first step (k(1)) and the second step (k(2)) follow the equation k(1) or k(2) = k(0) + k(OH(-) )[OH(-)], where k(0) is the rate constant for the degradation catalyzed by water and k(OH(-) ) represents the second-order rate constant for the degradation catalyzed by the hydroxide ion. At 37 degrees C the rate constants for the first step are k(OH(-) ) = 5.5 x 10(-2) min(-1) M(-1) [95% confidence interval (CI), 2.7 x 10(-2) to 8.4 x 10(-2) min(-1) M(-1)] and k(0) = 4.3 x 10(-2) min(-1) (95% CI, 4.0 x 10(-2) to 4.7 x 10(-2) min(-1)). For the second step the rate constants are k(OH(-) ) = 1.1 x 10(-3) min(-1) M(-1) (95% CI, -1.1 x 10(-3) to 3.3 x 10(-3)) min(-1) M(-1) and k(0) = 7.5 x 10(-3) min(-1) (95% CI, 7.2 x 10(-3) to 7.8 x 10(-3) min(-1)). Thus, the ring-opening step is nearly six times faster than the step involving the loss of the oxalato ligand.


Subject(s)
Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/pharmacology , Algorithms , Chromatography, Liquid , Hydrolysis , Indicators and Reagents , Kinetics , Oxaliplatin , Platinum/chemistry , Sodium Hydroxide/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
3.
Cancer Lett ; 180(2): 191-4, 2002 Jun 28.
Article in English | MEDLINE | ID: mdl-12175551

ABSTRACT

A new way of synthesizing the dihydrated oxaliplatin complex (DOC) is presented and its cytotoxicity is compared to that of oxaliplatin and cisplatin. By hydrolyzing oxaliplatin in aqueous sodium hydroxide at 70 degrees C, DOC was formed in less than 1 h. Cytotoxicity was studied in the non-small cell lung cancer cell line A549 using the fluorescent microculture cytotoxic assay. Oxaliplatin and cisplatin had similar cytotoxicity profiles, whereas DOC was found to be considerably more toxic. The cytotoxicity of oxaliplatin might, at least in part, be mediated through the formation of DOC.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Dose-Response Relationship, Drug , Humans , Organoplatinum Compounds/pharmacology , Oxaliplatin , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...