Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Cancer Res Clin Oncol ; 150(2): 106, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418798

ABSTRACT

PURPOSE: De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS: A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS: Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION: HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.


Subject(s)
Breast Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Female , Breast Neoplasms/pathology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Oxidoreductases , Cholesterol
2.
Viruses ; 15(10)2023 09 23.
Article in English | MEDLINE | ID: mdl-37896762

ABSTRACT

Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance. To achieve this goal, we developed a highly versatile baculoviral transfer vector generation system called PluriBAC. The PluriBAC system consists of three insert entry levels using Golden Gate assembly technology. The wide availability of vectors and sticky ends allows enough versatility to combine more than four different promoters, genes of interest, and terminator sequences. Here, we report not only the rational design of the PluriBAC system but also its use for the generation of baculoviral reporter vectors applied to different fields of biotechnology. We demonstrated that recombinant AcMNPV baculoviruses generated with the PluriBAC system were capable of infecting Spodoptera frugiperda larvae. On the other hand, we found that the recombinant budded virions (BV) generated using our system were capable of transducing different types of tumor and normal cells both in vitro and in vivo. Our findings suggest that the PluriBAC system could constitute a versatile tool for the generation of insecticide and gene therapy vectors.


Subject(s)
Baculoviridae , Nucleopolyhedroviruses , Animals , Baculoviridae/genetics , Nucleopolyhedroviruses/genetics , Spodoptera , Biotechnology
3.
Cancers (Basel) ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627089

ABSTRACT

Humanin (HN) is a mitochondrial-derived peptide with robust cytoprotective effects in many cell types. Although the administration of HN analogs has been proposed to treat degenerative diseases, its role in the pathogenesis of cancer is poorly understood. Here, we evaluated whether HN affects the chemosensitivity of glioblastoma (GBM) cells. We found that chemotherapy upregulated HN expression in GBM cell lines and primary cultures derived from GBM biopsies. An HN analog (HNGF6A) boosted chemoresistance, increased the migration of GBM cells and improved their capacity to induce endothelial cell migration and proliferation. Chemotherapy also upregulated FPR2 expression, an HN membrane-bound receptor, and the HNGF6A cytoprotective effects were inhibited by an FPR2 receptor antagonist (WRW4). These effects were observed in glioma cells with heterogeneous genetic backgrounds, i.e., glioma cells with wild-type (wtIDH) and mutated (mIDH) isocitrate dehydrogenase. HN silencing using a baculoviral vector that encodes for a specific shRNA for HN (BV.shHN) reduced chemoresistance, and impaired the migration and proangiogenic capacity of GBM cells. Taken together, our findings suggest that HN boosts the hallmark characteristics of GBM, i.e., chemoresistance, migration and endothelial cell proliferation. Thus, strategies that inhibit the HN/FPR2 pathway may improve the response of GBM to standard therapy.

4.
Viruses ; 15(3)2023 02 22.
Article in English | MEDLINE | ID: mdl-36992317

ABSTRACT

We aimed to assess the potential of baculoviral vectors (BV) for brain cancer gene therapy. We compared them with adenoviral vectors (AdV), which are used in neuro-oncology, but for which there is pre-existing immunity. We constructed BVs and AdVs encoding fluorescent reporter proteins and evaluated their transduction efficiency in glioma cells and astrocytes. Naïve and glioma-bearing mice were intracranially injected with BVs to assess transduction and neuropathology. Transgene expression was also assessed in the brain of BV-preimmunized mice. While the expression of BVs was weaker than AdVs in murine and human glioma cell lines, BV-mediated transgene expression in patient-derived glioma cells was similar to AdV-mediated transduction and showed strong correlation with clathrin expression, a protein that interacts with the baculovirus glycoprotein GP64, mediating BV endocytosis. BVs efficiently transduced normal and neoplastic astrocytes in vivo, without apparent neurotoxicity. BV-mediated transgene expression was stable for at least 21 days in the brain of naïve mice, but it was significantly reduced after 7 days in mice systemically preimmunized with BVs. Our findings indicate that BVs efficiently transduce glioma cells and astrocytes without apparent neurotoxicity. Since humans do not present pre-existing immunity against BVs, these vectors may constitute a valuable tool for the delivery of therapeutic genes into the brain.


Subject(s)
Baculoviridae , Brain Neoplasms , Genetic Therapy , Genetic Vectors , Glioma , Baculoviridae/genetics , Baculoviridae/immunology , Brain Neoplasms/therapy , Glioma/therapy , Animals , Mice , Cell Line, Tumor , Humans , Rats , Mice, Inbred C57BL , Male , Transduction, Genetic , Astrocytes/virology , Transgenes/genetics
5.
Sci Rep ; 12(1): 18803, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335243

ABSTRACT

Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (hPSCs) that can differentiate into a wide range of specialized cells. Although moderate hypoxia (5% O2) improves hPSC self-renewal, pluripotency, and cell survival, the effect of acute severe hypoxia (1% O2) on hPSC viability is still not fully elucidated. In this sense, we explore the consequences of acute hypoxia on hPSC survival by culturing them under acute (maximum of 24 h) physical severe hypoxia (1% O2). After 24 h of hypoxia, we observed HIF-1α stabilization concomitant with a decrease in cell viability. We also observed an increase in the apoptotic rate (western blot analysis revealed activation of CASPASE-9, CASPASE-3, and PARP cleavage after hypoxia induction). Besides, siRNA-mediated downregulation of HIF-1α and P53 did not significantly alter hPSC apoptosis induced by hypoxia. Finally, the analysis of BCL-2 family protein expression levels disclosed a shift in the balance between pro- and anti-apoptotic proteins (evidenced by an increase in BAX/MCL-1 ratio) caused by hypoxia. We demonstrated that acute physical hypoxia reduced hPSC survival and triggered apoptosis by a HIF-1α and P53 independent mechanism.


Subject(s)
Pluripotent Stem Cells , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Cell Hypoxia , Apoptosis , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pluripotent Stem Cells/metabolism
6.
Sci Rep ; 12(1): 17729, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273072

ABSTRACT

The recurrence of Glioblastoma is partly attributed to the highly resistant subpopulation of glioma stem cells. A novel therapeutic approach focuses on restoring apoptotic programs in these cancer stem cells, as they are often deregulated. BH3-mimetics, targeting anti-apoptotic Bcl-2 family members, are emerging as promising compounds to sensitize cancer cells to antineoplastic treatments. Herein, we determined that the most abundantly expressed anti-apoptotic Bcl-2 family members, Bcl-xL and Mcl-1, are the most relevant in regulating patient-derived glioma stem cell survival. We exposed these cells to routinely used chemotherapeutic drugs and BH3-mimetics (ABT-263, WEHI-539, and S63845). We observed that the combination of BH3-mimetics targeting Bcl-xL with chemotherapeutic agents caused a marked increase in cell death and that this sensitivity to Bcl-xL inhibition correlated with Noxa expression levels. Interestingly, whereas co-targeting Bcl-xL and Mcl-1 led to massive cell death in all tested cell lines, down-regulation of Noxa promoted cell survival only in cell lines expressing higher levels of this BH3-only. Therefore, in glioma stem cells, the efficacy of Bcl-xL inhibition is closely associated with Mcl-1 activity and Noxa expression. Hence, a potentially effective strategy would consist of combining Bcl-xL inhibitors with chemotherapeutic agents capable of inducing Noxa, taking advantage of this pro-apoptotic factor.


Subject(s)
Antineoplastic Agents , Glioma , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Apoptosis Regulatory Proteins/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Glioma/drug therapy , Neoplastic Stem Cells/metabolism , bcl-X Protein/metabolism
7.
Gene Expr Patterns ; 40: 119168, 2021 06.
Article in English | MEDLINE | ID: mdl-33503507

ABSTRACT

Human pluripotent stem cells (hPSCs), like embryonic (hESCs) and induced pluripotent stem cells (hiPSCs), exhibit an unusual cell cycle structure characterized by a short G1 phase and cells being most of time in S phase. hPSCs are receptive to differentiation cues during their transition through G1 phase when lineage determination is decided. Although several MicroRNAs (miRNAs) have been shown to target transcripts that directly or indirectly coordinate the cell cycle of pluripotent cells, its temporal expression profile along hPSCs cell cycle remains poorly characterized. miR-145 and miR-296 are induced during differentiation and silence the self-renewal and pluripotency program. miR-302 family is essential for hPSCs stemness and its expression decreases during differentiation. We aimed to study how the aforementioned miRNAs are regulated along the cell cycle of hPSCs. We demonstrated by pharmacological synchronization and block and release experiments that miR-145, miR-296 and miR-302 family are periodically expressed in hPSCs. Importantly, miR-302 family expression is induced at G1/S boundary and remained high at S phase, presumably to impede differentiation onset. Besides, we confirmed by a gene ontology analysis that many validated miR-302 family target genes are involved in cell cycle regulation.


Subject(s)
Cell Cycle Checkpoints , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , Cell Line , Cytostatic Agents/pharmacology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , MicroRNAs/metabolism
8.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008740

ABSTRACT

Despite recent advances in diagnosis and treatment, glioblastoma (GBM) represents the most common and aggressive brain tumor in the adult population, urging identification of new rational therapeutic targets. Galectins, a family of glycan-binding proteins, are highly expressed in the tumor microenvironment (TME) and delineate prognosis and clinical outcome in patients with GBM. These endogenous lectins play key roles in different hallmarks of cancer by modulating tumor cell proliferation, oncogenic signaling, migration, vascularization and immunity. Additionally, they have emerged as mediators of resistance to different anticancer treatments, including chemotherapy, radiotherapy, immunotherapy, and antiangiogenic therapy. Particularly in GBM, galectins control tumor cell transformation and proliferation, reprogram tumor cell migration and invasion, promote vascularization, modulate cell death pathways, and shape the tumor-immune landscape by targeting myeloid, natural killer (NK), and CD8+ T cell compartments. Here, we discuss the role of galectins, particularly galectin-1, -3, -8, and -9, as emerging glyco-checkpoints that control different mechanisms associated with GBM progression, and discuss possible therapeutic opportunities based on inhibition of galectin-driven circuits, either alone or in combination with other treatment modalities.


Subject(s)
Galectins/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Molecular Targeted Therapy , Polysaccharides/metabolism , Animals , Disease Progression , Drug Resistance, Neoplasm , Glioblastoma/immunology , Humans
9.
Sci Rep ; 10(1): 20653, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244167

ABSTRACT

Human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are self-renewing human pluripotent stem cells (hPSCs) that can differentiate to a wide range of specialized cells. Notably, hPSCs enhance their undifferentiated state and self-renewal properties in hypoxia (5% O2). Although thoroughly analyzed, hypoxia implication in hPSCs death is not fully determined. In order to evaluate the effect of chemically mimicked hypoxia on hPSCs cell survival, we analyzed changes in cell viability and several aspects of apoptosis triggered by CoCl2 and dimethyloxalylglycine (DMOG). Mitochondrial function assays revealed a decrease in cell viability at 24 h post-treatments. Moreover, we detected chromatin condensation, DNA fragmentation and CASPASE-9 and 3 cleavages. In this context, we observed that P53, BNIP-3, and NOXA protein expression levels were significantly up-regulated at different time points upon chemical hypoxia induction. However, only siRNA-mediated downregulation of NOXA but not HIF-1α, HIF-2α, BNIP-3, and P53 did significantly affect the extent of cell death triggered by CoCl2 and DMOG in hPSCs. In conclusion, chemically mimicked hypoxia induces hPSCs cell death by a NOXA-mediated HIF-1α and HIF-2α independent mechanism.


Subject(s)
Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/genetics , Caspase 9/genetics , Cell Death/genetics , Cell Survival/genetics , DNA Fragmentation , Down-Regulation/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Up-Regulation/genetics
10.
BMC Mol Cell Biol ; 20(1): 40, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31462218

ABSTRACT

BACKGROUND: The essentially unlimited expansion potential and the pluripotency of human embryonic stem cells (hESCs) make them attractive for cell-based therapeutic purposes. Although hESCs can indefinitely proliferate in culture, unlike transformed cancer cells, they are endowed with a cell-intrinsic property termed mitochondrial priming that renders them highly sensitive to apoptotic stimuli. Thus, all attempts to broaden the insights into hESCs apoptosis may be helpful for establishing pro-survival strategies valuable for its in vitro culture and further use in clinical applications. Cyclin-dependent kinases (CDKs), a family of serine/threonine protein kinases originally identified as regulators of the eukaryotic cell cycle, can also regulate transcription and differentiation. Moreover, there are compelling data suggesting that its activities are involved in certain apoptotic programs in different cell types. Currently, it is not completely determined whether CDKs regulate apoptotic processes in rapidly proliferating and apoptosis-prone hESCs. In this study, to elucidate the effect of CDKs inhibition in hESCs we used Roscovitine (ROSC), a purine analogue that selectively inhibits the activities of these kinases. RESULTS: Inhibition of CDKs by ROSC triggers programmed cell death in hESCs but not in proliferating somatic cells (human fibroblasts). The apoptotic process encompasses caspase-9 and -3 activation followed by PARP cleavage. ROSC treatment also leads to p53 stabilization, which coincides with site-specific phosphorylation at serine 46 and decreased levels of Mdm2. Additionally, we observed a transcriptional induction of p53AIP1, a repression of pro-survival factor Mcl-1 and an up-regulation of pro-apoptotic BH3-only proteins NOXA and PUMA. Importantly, we found that the role of CDK2 inhibition appears to be at best accessory as an active CDK2 is not required to ensure hESCs survival. CONCLUSION: Our experimental data reveal that hESCs, contrary to fibroblasts, exhibit a pronounced sensitivity to ROSC.


Subject(s)
Cyclin-Dependent Kinases/pharmacology , Human Embryonic Stem Cells/cytology , Protein Kinase Inhibitors/pharmacology , Roscovitine/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Down-Regulation/drug effects , Human Embryonic Stem Cells/drug effects , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Phosphorylation/drug effects , Protein Domains , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/metabolism
11.
Mol Neurobiol ; 56(11): 7810-7821, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31124078

ABSTRACT

Glioblastoma multiforme is the most aggressive primary brain tumor. Current knowledge suggests that the growth and recurrence of these tumors are due in part to the therapy-resistant glioma stem cell subpopulation, which possesses the ability for self-renewal and proliferation, driving tumor progression. In many cancers, the p16INK4a-CDK4/6-pRb pathway is disrupted in favor of cell cycle progression. In particular, the frequent deregulation of CDK4/6 in cancer positions these kinases as promising targets. Palbociclib, a potent and selective CDK4/6 inhibitor, has been approved by the FDA as a first-line treatment of advanced breast cancer and there is currently interest in evaluating its effect on other cancer types. Palbociclib has been reported to be efficient, not only at halting proliferation, but also at inducing senescence in different tumor types. In this study, we evaluated the effect of this inhibitor on four patient-derived glioma stem cell-enriched cell lines. We found that Palbociclib rapidly and effectively inhibits proliferation without affecting cell viability. We also established that in these cell lines CDK6 is the key interphase CDK for controlling cell cycle progression. Prolonged exposure to Palbociclib induced a senescent-like phenotype characterized by flattened morphology, cell cycle arrest, increased ß-galactosidase activity and induction of other senescent-associated markers. However, we found that after Palbociclib removal cell lines resumed normal proliferation, which implies they conserved their replicative potential. As a whole, our results indicate that in patient-derived glioma stem cell-enriched cell lines, Palbociclib induces a senescent-like quiescence rather than true senescence.


Subject(s)
Brain Neoplasms/pathology , Cellular Senescence/drug effects , Glioma/pathology , Neoplastic Stem Cells/pathology , Piperazines/pharmacology , Pyridines/pharmacology , Apoptosis/drug effects , Brain Neoplasms/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Glioma/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Phenotype , Roscovitine/pharmacology
12.
Cell Cycle ; 17(14): 1721-1744, 2018.
Article in English | MEDLINE | ID: mdl-29995582

ABSTRACT

Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells (hESCs and hiPSCs) show unique cell cycle characteristics, such as a short doubling time due to an abbreviated G1 phase. Whether or not the core cell cycle machinery directly regulates the stemness and/or the differentiation potential of hPSCs remains to be determined. To date, several scenarios describing the atypical cell cycle of hPSCs have been suggested, and therefore there is still controversy over how cyclins, master regulators of the cell cycle, are expressed and regulated. Furthermore, the cell cycle profile and the expression pattern of major cyclins in hESCs-derived neuroprogenitors (NP) have not been studied yet. Therefore, herein we characterized the expression pattern of major cyclins in hPSCs and NP. We determined that all studied cyclins mRNA expression levels fluctuate along cell cycle. Particularly, after a thorough analysis of synchronized cell populations, we observed that cyclin E1 mRNA levels increased sharply in G1/S concomitantly with cyclin E1 protein accumulation in hPSCs and NP. Additionally, we demonstrated that cyclin E1 mRNA expression levels involves the activation of MEK/ERK pathway and the transcription factors c-Myc and E2Fs in hPSCs. Lastly, our results reveal that proteasome mediates the marked down-regulation (degradation) of cyclin E1 protein observed in G2/M by a mechanism that requires a functional CDK2 but not GSK3ß activity. ABBREVIATIONS: hPSCs: human pluripotent stem cells; hESCs: human embryonic stem cells; hiPSCs: human induced pluripotent stem cells; NP: neuroprogenitors; HF: human foreskin fibroblasts; MEFs: mouse embryonic fibroblasts; iMEFs: irradiated mouse embryonic fibroblasts; CDKs: cyclindependent kinases; CKIs: CDK inhibitors; CNS: central nervous system; Oct-4: Octamer-4; EB: embryoid body; AFP: Alpha-fetoprotein; cTnT: Cardiac Troponin T; MAP-2: microtubule-associated protein; TUJ-1: neuron-specific class III ß-tubulin; bFGF: basic fibroblastic growth factor; PI3K: Phosphoinositide 3-kinase; KSR: knock out serum replacement; CM: iMEF conditioned medium; E8: Essential E8 medium.


Subject(s)
Cyclin E/genetics , Gene Expression Regulation , Neurons/cytology , Neurons/metabolism , Oncogene Proteins/genetics , Pluripotent Stem Cells/cytology , Cell Proliferation , Cells, Cultured , Cyclin E/metabolism , E2F Transcription Factors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/metabolism , G1 Phase Cell Cycle Checkpoints , G2 Phase , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitosis , Neural Stem Cells/metabolism , Oncogene Proteins/metabolism , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Neoplasia ; 19(7): 519-529, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28582703

ABSTRACT

High-grade gliomas are the most prevalent and lethal primary brain tumors. They display a hierarchical arrangement with a population of self-renewing and highly tumorigenic cells called cancer stem cells. These cells are thought to be responsible for tumor recurrence, which make them main candidates for targeted therapies. Unbridled cell cycle progression may explain the selective sensitivity of some cancer cells to treatments. The members of the Cip/Kip family p21Cip1 and p27Kip1 were initially considered as tumor suppressors based on their ability to block proliferation. However, they are currently looked at as proteins with dual roles in cancer: one as tumor suppressor and the other as oncogene. Therefore, the aim of this study was to determine the functions of these cell cycle inhibitors in five patient-derived glioma stem cell-enriched cell lines. We found that these proteins are functional in glioma stem cells. They negatively regulate cell cycle progression both in unstressed conditions and in response to genotoxic stress. In addition, p27Kip1 is upregulated in nutrient-restricted and differentiating cells, suggesting that this Cip/Kip is a mediator of antimitogenic signals in glioma cells. Importantly, the lack of these proteins impairs cell cycle halt in response to genotoxic agents, rendering cells more vulnerable to DNA damage. For these reasons, these proteins may operate both as tumor suppressors, limiting cell proliferation, and as oncogenes, conferring cell resistance to DNA damage. Thus, deepening our knowledge on the biological functions of these Cip/Kips may shed light on how some cancer cells develop drug resistance.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , DNA Damage , Drug Resistance, Neoplasm/genetics , Glioma/genetics , Neoplastic Stem Cells/metabolism , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Expression Regulation, Neoplastic , Gene Silencing , Glioma/metabolism , Glioma/pathology , Humans , Protein Transport , RNA, Small Interfering/genetics , Stress, Physiological/genetics
14.
Cancer Res ; 76(18): 5383-94, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27406830

ABSTRACT

KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR.


Subject(s)
Brain Neoplasms/pathology , Carcinogenesis/metabolism , Glioblastoma/pathology , Histone Acetyltransferases/metabolism , Neoplastic Stem Cells/metabolism , Adult , Aged , Animals , Biomarkers, Tumor/analysis , Blotting, Western , Cell Separation , Female , Flow Cytometry , Gene Knockdown Techniques , Heterografts , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplastic Stem Cells/pathology , Nuclear Proteins , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Up-Regulation
15.
PLoS One ; 11(3): e0152607, 2016.
Article in English | MEDLINE | ID: mdl-27030982

ABSTRACT

Human embryonic stem cells (hESCs) are hypersensitive to genotoxic stress and display lower survival ability relative to their differentiated progeny. Herein, we attempted to investigate the source of this difference by comparing the DNA damage responses triggered by the topoisomerase I inhibitor camptothecin, in hESCs, human induced pluripotent stem cells (hiPSCs) and hESCs-derived neuroprogenitors (NP). We observed that upon camptothecin exposure pluripotent stem cells underwent apoptosis more swiftly and at a higher rate than differentiated cells. However, the cellular response encompassing ataxia-telangiectasia mutated kinase activation and p53 phosphorylation both on serine 15 as well as on serine 46 resulted very similar among the aforementioned cell types. Importantly, we observed that hESCs and hiPSCs express lower levels of the anti-apoptotic protein Bcl-2 than NP. To assess whether Bcl-2 abundance could account for this differential response we treated cells with ABT-263, WEHI-539 and ABT-199, small molecules that preferentially target the BH3-binding pocket of Bcl-xL and/or Bcl-2 and reduce their ability to sequester pro-apoptotic factors. We found that in the absence of stress stimuli, NP exhibited a higher sensitivity to ABT- 263 and WEHI-539 than hESCs and hiPSCs. Conversely, all tested cell types appeared to be highly resistant to the Bcl-2 specific inhibitor, ABT-199. However, in all cases we determined that ABT-263 or WEHI-539 treatment exacerbated camptothecin-induced apoptosis. Importantly, similar responses were observed after siRNA-mediated down-regulation of Bcl-xL or Bcl-2. Taken together, our results suggest that Bcl-xL contrary to Bcl-2 contributes to ensure cell survival and also functions as a primary suppressor of DNA double-strand brake induced apoptosis both in pluripotent and derived NP cells. The emerging knowledge of the relative dependence of pluripotent and progenitor cells on Bcl-2 and Bcl-xL activities may help to predict cellular responses and potentially manipulate these cells for therapeutic purposes in the near future.


Subject(s)
Aniline Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Sulfonamides/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Camptothecin/pharmacology , Cell Line , Human Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-X Protein/metabolism
16.
Brain Pathol ; 26(1): 43-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25808628

ABSTRACT

Although BMP4-induced differentiation of glioma stem cells (GSCs) is well recognized, details of the cellular responses triggered by this morphogen are still poorly defined. In this study, we established several GSC-enriched cell lines (GSC-ECLs) from high-grade gliomas. The expansion of these cells as adherent monolayers, and not as floating neurospheres, enabled a thorough study of the phenotypic changes that occurred during their differentiation. Herein, we evaluated GSC-ECLs' behavior toward differentiating conditions by depriving them of growth factors and/or by adding BMP4 at different concentrations. After analyzing cellular morphology, proliferation and lineage marker expression, we determined that GSC-ECLs have distinct preferences in lineage choice, where some of them showed an astrocyte fate commitment and others a neuronal one. We found that this election seems to be dictated by the expression pattern of BMP signaling components present in each GSC-ECL. Additionally, treatment of GSC-ECLs with the BMP antagonist, Noggin, also led to evident phenotypic changes. Interestingly, under certain conditions, some GSC-ECLs adopted an unexpected smooth muscle-like phenotype. As a whole, our findings illustrate the wide differentiation potential of GSCs, highlighting their molecular complexity and paving a way to facilitate personalized differentiating therapies.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Brain Neoplasms/pathology , Carrier Proteins/metabolism , Glioma/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Aged , Antigens, CD/metabolism , Bone Morphogenetic Protein 4/pharmacology , Carrier Proteins/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Phenotype , Signal Transduction/drug effects , Signal Transduction/physiology , Tumor Cells, Cultured/pathology , Tumor Cells, Cultured/physiology
17.
Stem Cell Res ; 12(2): 400-14, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24380814

ABSTRACT

Embryonic stem cells (ESCs) need to maintain their genomic integrity in response to DNA damage to safeguard the integrity of the organism. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and, if not repaired correctly, they can lead to cell death, genomic instability and cancer. How human ESCs (hESCs) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. In the present study we aim to determine the hESC response to the DSB inducing agent camptothecin (CPT). We find that hESCs are hypersensitive to CPT, as evidenced by high levels of apoptosis. CPT treatment leads to DNA-damage sensor kinase (ATM and DNA-PKcs) phosphorylation on serine 1981 and serine 2056, respectively. Activation of ATM and DNA-PKcs was followed by histone H2AX phosphorylation on Ser 139, a sensitive reporter of DNA damage. Nuclear accumulation and ATM-dependent phosphorylation of p53 on serine 15 were also observed. Remarkably, hESC viability was further decreased when ATM or DNA-PKcs kinase activity was impaired by the use of specific inhibitors. The hypersensitivity to CPT treatment was markedly reduced by blocking p53 translocation to mitochondria with pifithrin-µ. Importantly, programmed cell death was achieved in the absence of the cyclin dependent kinase inhibitor, p21(Waf1), a bona fide p53 target gene. Conversely, differentiated hESCs were no longer highly sensitive to CPT. This attenuated apoptotic response was accompanied by changes in cell cycle profile and by the presence of p21(Waf1). The results presented here suggest that p53 has a key involvement in preventing the propagation of damaged hESCs when genome is threatened. As a whole, our findings support the concept that the phenomenon of apoptosis is a prominent player in normal embryonic development.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , Embryonic Stem Cells/drug effects , Topoisomerase I Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Survival/drug effects , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , DNA Fragmentation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Flow Cytometry , Humans , Mice , Phosphorylation , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism
18.
PLoS One ; 8(7): e70267, 2013.
Article in English | MEDLINE | ID: mdl-23936178

ABSTRACT

Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of Plasmocin(TM) and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days Plasmocin(TM) 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with Plasmocin(TM) 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that Plasmocin(TM) and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal.


Subject(s)
Anti-Bacterial Agents/pharmacology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Anti-Bacterial Agents/toxicity , Apoptosis/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Ciprofloxacin/pharmacology , Ciprofloxacin/toxicity , Embryonic Stem Cells/cytology , Embryonic Stem Cells/microbiology , Humans , Karyotype , Macrolides/pharmacology , Macrolides/toxicity , Mycoplasma/drug effects
19.
Apoptosis ; 17(2): 132-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22012335

ABSTRACT

Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate to a wide range of specialized cells and hold great promise as models for human development and disease, as well as for drug discovery and cell-replacement therapies. Group B Coxsackie viruses (CVBs) produce acute myocarditis, pancreatitis, non-septic meningitis and encephalitis in neonates, children and young adults. Moreover, CVBs can produce spontaneous miscarriage after early embryo infection. It was reported that hESCs express CVBs receptors and are susceptible to CVB3 infection. Apoptosis is one of the hallmarks of CVBs infection although details regarding CVB3 involvement in the apoptotic processes remain elusive. In order to evaluate the mechanisms of cell death induced by CVB3 in these pluripotent cells, we infected HUES-5 (H5) and WA01 (H1) hESC lines with CVB3. After validating the maintenance of stemness in these hESC lines when grown as confluent monolayers in feeder-free conditions, we analysed several aspects of programmed cell death triggered by CVB3. In all cases, we detected chromatin condensation, DNA fragmentation and caspase-9 and 3 cleavages. Moreover, we observed the presence of cleaved PARP product which was preceded by the appearance of p17, the catalytically active fragment of caspase-3. Mitochondrial function assays revealed a MOI dependent decrease in cell viability at 24 h post-infection (pi). No appreciable modifications in Bcl-2, Bcl-X(L) and Bax protein levels were observed upon CVB3 infection during 5-24 h observation period. However, a marked decrease in pro-apoptotic Bad abundance was detected without changes in its mRNA levels. In this study we found that the hESCs are highly susceptible to CVB3 infection and display elevated apoptosis rates, thus emerging as suitable human non-transformed in vitro models to study CVB3-induced apoptosis and resulting relevant to understand CVBs pathogenesis.


Subject(s)
Apoptosis , Coxsackievirus Infections/metabolism , Embryonic Stem Cells/metabolism , Enterovirus/metabolism , Caspases/genetics , Caspases/metabolism , Cell Line , Cell Survival , Chromatin/metabolism , Coxsackievirus Infections/virology , DNA Fragmentation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/virology , Enterovirus/pathogenicity , Gene Expression , HeLa Cells , Humans , Signal Transduction , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism
20.
Rev. argent. cardiol ; 77(6): 458-464, nov.-dic. 2009. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-634123

ABSTRACT

Introducción Las células madre son motivo de intensa investigación debido a la posibilidad de su utilización en el tratamiento de numerosas enfermedades, en particular las cardiovasculares. La diferenciación de células madre embrionarias humanas en cardiomiocitos se ha realizado exitosamente in vitro. Se han establecido métodos de cultivo y diferenciación, señales involucradas en la cardiogénesis y los cardiomiocitos generados se han utilizado en modelos de regeneración miocárdica. Sin embargo, aún quedan muchos interrogantes que se están investigando activamente. Objetivo Desarrollar una metodología que permita el cultivo de células embrionarias y su diferenciación en cardiomiocitos. Material y métodos Se utilizaron cuatro líneas de células madre embrionarias humanas. Se cultivaron y diferenciaron a través de los métodos publicados previamente en la bibliografía. El estado indiferenciado y la diferenciación en cardiomiocitos se verificaron por medio de inmunomarcación fluorescente y RT-PCR. Resultados La metodología utilizada permitió cultivar las células y mantenerlas en estado indiferenciado. Aunque con eficacia dispar, se logró la diferenciación en cardiomiocitos de las cuatro líneas celulares utilizadas. La confirmación se realizó por medio de la expresión de factores de transcripción miocárdicos y proteínas estructurales cardíacas. Conclusiones El cultivo y la diferenciación de células madre embrionarias humanas fue posible en nuestro sistema. Estos resultados preliminares nos impulsan a continuar y a desarrollar nuestros métodos con células pluripotentes inducidas.


Background The role of stem cells in the treatment of several conditions, especially heart diseases, is under permanent investigation. Human embryonic stem cells have been successfully differentiated in vitro into cardiomyocytes. Methods of cell culture and cardiomyocyte differentiation are well established; signals regulating cardiogenesis have been identified and the cardiomyocytes generated have been used in models of myocardial regeneration. However, several questions still remain and are currently under active investigation. Objective To develop a culture system that is suitable for the induction of embryonic stem cells to cardiomyocyte differentiation. Material and Methods Four human embryonic stem cell lines were used. The cells were cultured and differentiation was induced using methods previously described. The presence of cells in an undifferentiated state and cardiomyocyte differentiation was detected by immunohistochemical studies (fluorescent staining) and RT-PCR. Results The methodology used allowed stem cells growth in the culture, and maintained them in an undifferentiated state. Cardiomyocyte differentiation was achieved in the four cell lines used, yet with uneven efficacy. This was confirmed by the expression of myocardial transcription factors and heart structural proteins. Conclusions Our system allowed human embryonic stem cell growth and differentiation in the culture. These preliminary results encourage us to continue developing our methods with induced pluripotent stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...