Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Ergon ; 82: 102963, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31580996

ABSTRACT

Traction testing of footwear is expensive, which may create barriers for certain users to assess footwear. This study aimed to develop a statistical model that predicts available coefficient of friction (ACOF) under boundary lubrication conditions based on inexpensive measurements of footwear outsole features. Geometric and material hardness parameters were measured from fifty-eight footwear designs labeled as slip-resistant. A robotic friction measurement device was used to quantify ACOF with canola oil as the contaminant. Stepwise regression methods were used to develop models based on the outsole parameters and floor type to predict ACOF. The predictive ability of the regression models was tested using the k-fold cross-validation method. Results indicated that 87% of ACOF variation was explained by three shoe outsole parameters (tread surface area, heel shape, hardness) and floor type. This approach may provide an assessment tool for safety practitioners to assess footwear traction and improve workers' safety.


Subject(s)
Floors and Floorcoverings , Shoes , Accidental Falls/prevention & control , Equipment Design , Female , Friction , Humans , Male , Surface Properties
2.
J Biomech ; 74: 57-63, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29759653

ABSTRACT

This paper quantified the heel kinematics and kinetics during human slips with the goal of guiding available coefficient of friction (ACOF) testing methods for footwear and flooring. These values were then compared to the testing parameters recommended for measuring shoe-floor ACOF. Kinematic and kinetic data of thirty-nine subjects who experienced a slip incident were pooled from four similar human slipping studies for this secondary analysis. Vertical ground reaction force (VGRF), center of pressure (COP), shoe-floor angle, side-slip angle, sliding speed and contact time were quantified at slip start (SS) and at the time of peak sliding speed (PSS). Statistical comparisons were used to test if any discrepancies exist between the state of slipping foot and current ACOF testing parameters. The main findings were that the VGRF (26.7 %BW, 179.4 N), shoe-floor angle (22.1°) and contact time (0.02 s) at SS were significantly different from the recommended ACOF testing parameters. Instead, the testing parameters are mostly consistent with the state of the shoe at PSS. We argue that changing the footwear testing parameters to conditions at SS is more appropriate for relating ACOF to conditions of actual slips, including lower vertical forces, larger shoe-floor angles and shorter contact duration.


Subject(s)
Accidental Falls , Mechanical Phenomena , Movement , Shoes , Adult , Biomechanical Phenomena , Floors and Floorcoverings , Friction , Humans , Kinetics , Male , Pressure
3.
Environ Sci Technol ; 47(6): 2562-9, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23425120

ABSTRACT

The exponential increase in fossil energy production from Devonian-age shale in the Northeastern United States has highlighted the management challenges for produced waters from hydraulically fractured wells. Confounding these challenges is a scant availability of critical water quality parameters for this wastewater. Chemical analyses of 160 flowback and produced water samples collected from hydraulically fractured Marcellus Shale gas wells in Pennsylvania were correlated with spatial and temporal information to reveal underlying trends. Chloride was used as a reference for the comparison as its concentration varies with time of contact with the shale. Most major cations (i.e., Ca, Mg, Sr) were well-correlated with chloride concentration while barium exhibited strong influence of geographic location (i.e., higher levels in the northeast than in southwest). Comparisons against brines from adjacent formations provide insight into the origin of salinity in produced waters from Marcellus Shale. Major cations exhibited variations that cannot be explained by simple dilution of existing formation brine with the fracturing fluid, especially during the early flowback water production when the composition of the fracturing fluid and solid-liquid interactions influence the quality of the produced water. Water quality analysis in this study may help guide water management strategies for development of unconventional gas resources.


Subject(s)
Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Quality , Cations/analysis , Chlorides/analysis , Oil and Gas Fields/chemistry , Salts/analysis , Water Supply/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...