Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 38(22-23): 2922-2930, 2017 11.
Article in English | MEDLINE | ID: mdl-28556996

ABSTRACT

Fibrinogen (FIB) is a secretory glycoprotein synthesized by hepatocytes that has a key role in blood clotting. Its glycosylation has not been studied in detail and little is known about the biological variability of FIB N-glycosylation, mainly due to the lack of fast, simple, and robust approaches to purify FIB from blood plasma samples. In recent years, customised chromatographic monoliths have been used for a variety of biological applications due to their unique characteristics. Here we describe development and optimisation of monolithic supports bearing monoclonal anti-human fibrinogen antibodies in a single column as well as in multi-well plate formats with high FIB specificity and binding capacity for fast immunoaffinity purification of FIB from human blood samples. The developed semi-high-throughput workflow has been successfully applied for FIB immunoaffinity isolation and subsequent ultra performance liquid chromatography N-glycosylation analysis in ten healthy human individuals, demonstrating the potential of monolithic supports in glycomics studies.


Subject(s)
Antibodies, Immobilized/chemistry , Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods , Fibrinogen/chemistry , High-Throughput Screening Assays/methods , Antibodies, Immobilized/metabolism , Antibodies, Monoclonal/metabolism , Fibrinogen/analysis , Fibrinogen/metabolism , Glycosylation , Humans , Reproducibility of Results
2.
J Chromatogr A ; 1464: 72-8, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27554023

ABSTRACT

We investigated effect of immobilization procedure and monolith structure on chromatographic performance of methacrylate monoliths bearing affinity ligands. Monoliths of different pore size and various affinity ligands were prepared and characterized using physical and chromatographic methods. When testing protein A monoliths with different protein A ligand densities, a significant nonlinear effect of ligand density on dynamic binding capacity (DBC) for IgG was obtained and accurately described by Langmuir isotherm curve enabling estimation of protein A utilization as a function of ligand density. Maximal IgG binding capacity was found to be at least 12mg/mL exceeding theoretical monolayer adsorption value of 7.8mg/mL assuming hexagonal packing and IgG hydrodynamic diameter of 11nm. Observed discrepancy was explained by shrinkage of IgG during adsorption on protein A experimentally determined through calculated adsorbed IgG layer thickness of 5.4nm from pressure drop data. For monoliths with different pore size maximal immobilized densities of protein A as well as IgG dynamic capacity linearly correlates with monolith surface area indicating constant ligand utilization. Finally, IgGs toward different plasma proteins were immobilized via the hydrazide coupling chemistry to provide oriented immobilization. DBC was found to be flow independent and was increasing with the size of bound protein. Despite DBC was lower than IgG capacity to immobilized protein A, ligand utilization was higher.


Subject(s)
Chromatography, Affinity/methods , Methacrylates/chemistry , Adsorption , Chromatography, Affinity/instrumentation , Hydrodynamics , Ligands , Protein Binding , Staphylococcal Protein A/chemistry
3.
Electrophoresis ; 37(17-18): 2322-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27122488

ABSTRACT

Affinity depletion of abundant proteins such as HSA is an important stage in routine sample preparation prior to MS/MS analysis of biological samples with high range of concentrations. Due to the charge competition effects in electrospray ion source that results in discrimination of the low-abundance species, as well as limited dynamic range of MS/MS, restricted typically by three orders of magnitude, the identification of low-abundance proteins becomes a challenge unless the sample is depleted from high-concentration compounds. This dictates a need for developing efficient separation technologies allowing fast and automated protein depletion. In this study, we performed evaluation of a novel immunoaffinity-based Convective Interaction Media analytical columns (CIMac) depletion column with specificity to HSA (CIMac-αHSA). Because of the convective flow-through channels, the polymethacrylate CIMac monoliths afford flow rate independent binding capacity and resolution that results in relatively short analysis time compared with traditional chromatographic supports. Seppro IgY14 depletion kit was used as a benchmark to control the results of depletion. Bottom-up proteomic approach followed by label-free quantitation using normalized spectral indexes were employed for protein quantification in G1/G2 and cleavage/blastocyst in vitro fertilization culture media widely utilized in clinics for embryo growth in vitro. The results revealed approximately equal HSA level of 100 ± 25% in albumin-enriched fractions relative to the nondepleted samples for both CIMac-αHSA column and Seppro kit. In the albumin-free fractions concentrated 5.5-fold by volume, serum albumin was identified at the levels of 5-30% and 20-30% for the CIMac-αHSA and Seppro IgY14 spin columns, respectively.


Subject(s)
Embryo, Mammalian , Fertilization in Vitro , Serum Albumin/metabolism , Culture Media , Humans , Tandem Mass Spectrometry
4.
J Chromatogr A ; 1281: 87-93, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23398998

ABSTRACT

To exploit different chromatographic modes for efficient plasmid DNA (pDNA) purification a novel monolithic chromatographic support bearing multimodal histamine (HISA) groups was developed and characterized. Electrostatic charge of HISA groups depends on the pH of the mobile phase, being neutral above pH 7 and becoming positively charged below. As a consequence, HISA groups exhibit predominantly ion-exchange character at low pH values, which decreases with titration of the HISA groups resulting in increased hydrophobicity. This feature enabled separation of supercoiled (sc) pDNA from other plasmid isoforms (and other process related impurities) by adjusting salt or pH gradient. The dynamic binding capacity (DBC) for a 5.1kbp large plasmid at pH 5 was 4.0 mg/ml under low salt binding conditions, remaining relatively high (3.0 mg/ml) even in the presence of 1.0 M NaCl due to the multimodal nature of HISA ligand. Only slightly lower DBC (2.7 mg/ml) was determined under preferentially hydrophobic conditions in 3.0 M (NH(4))(2)SO(4), pH 7.4. Open circular and sc pDNA isoforms were baseline separated in descending (NH(4))(2)SO(4) gradient. Furthermore, an efficient plasmid DNA separation was possible both on analytical as well as on preparative scale by applying the descending pH gradient at a constant concentration (above 3.0 M) of (NH(4))(2)SO(4).


Subject(s)
Chromatography, Liquid/methods , DNA/chemistry , DNA/isolation & purification , Histamine/chemistry , Plasmids/chemistry , Plasmids/isolation & purification , Ammonium Sulfate/chemistry , Escherichia coli/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...