Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 54(15): 4458-62, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25702633

ABSTRACT

Metal sulfates (Ba, Bi, Ca, Cu, Mg, Mn, Na, Zn, Zr) were used as oxidizers in reactive compositions with Al nanopowder. These new kinds of nanothermites have outstandingly high reaction heats (4-6 kJ g(-1) ) compared to conventional Al/metal oxides (1.5-4.8 kJ g(-1) ) and also have good combustion velocities (200-840 m s(-1) vs 100-2500 m s(-1) ). These compositions are extremely insensitive to friction making their preparation and handling easy and safe. The sulfate hydration water increases the reaction heats and has a significant effect on the sensitivity to impact and to electrostatic discharge. The reaction of Al with water is easier to initiate than the one with sulfate which leads to two possible decomposition modes for samples exposed to an open flame. The pyrotechnical properties observed with sulfates have also been found for other sulfur oxygenates (SO3 (2-) , S2 O3 (2-) , S2 O8 (2-) ) which opens up new horizons in the domain of metastable interstitial composites.

2.
J Am Chem Soc ; 133(33): 13093-102, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21770458

ABSTRACT

The synthesis, lanthanide complexation, and solvent extraction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respectively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone.

3.
Dalton Trans ; 39(21): 5172-82, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20419175

ABSTRACT

The new ligand 6,6''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2':6',2''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1:2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1:1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1:2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-Ray crystallographic structures of the ligand and of its 1:1 complex with Y(III) were also obtained. The NMR and mass spectra of [Pd(CyMe4-BTTP)]n(2n+) are consistent with a dinuclear double helical structure (n = 2). In the absence of a phase-modifier, CyMe4-BTTP in n-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (±20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid. The metal(III) cations are extracted as the 1:1 complex from nitric acid. The generally low distribution coefficients observed compared with the BTBPs arise because the 1:1 complex of CyMe4-BTTP is considerably less hydrophobic than the 1:2 complexes formed by the BTBPs. In M(BTTP)(3+) complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...