Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(5): 059901, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397258

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.107.030402.

2.
Commun Math Phys ; 382(1): 49-86, 2021.
Article in English | MEDLINE | ID: mdl-33746232

ABSTRACT

The generation of certifiable randomness is the most fundamental information-theoretic task that meaningfully separates quantum devices from their classical counterparts. We propose a protocol for exponential certified randomness expansion using a single quantum device. The protocol calls for the device to implement a simple quantum circuit of constant depth on a 2D lattice of qubits. The output of the circuit can be verified classically in linear time, and is guaranteed to contain a polynomial number of certified random bits assuming that the device used to generate the output operated using a (classical or quantum) circuit of sub-logarithmic depth. This assumption contrasts with the locality assumption used for randomness certification based on Bell inequality violation and more recent proposals for randomness certification based on computational assumptions. Furthermore, to demonstrate randomness generation it is sufficient for a device to sample from the ideal output distribution within constant statistical distance. Our procedure is inspired by recent work of Bravyi et al. (Science 362(6412):308-311, 2018), who introduced a relational problem that can be solved by a constant-depth quantum circuit, but provably cannot be solved by any classical circuit of sub-logarithmic depth. We develop the discovery of Bravyi et al. into a framework for robust randomness expansion. Our results lead to a new proposal for a demonstrated quantum advantage that has some advantages compared to existing proposals. First, our proposal does not rest on any complexity-theoretic conjectures, but relies on the physical assumption that the adversarial device being tested implements a circuit of sub-logarithmic depth. Second, success on our task can be easily verified in classical linear time. Finally, our task is more noise-tolerant than most other existing proposals that can only tolerate multiplicative error, or require additional conjectures from complexity theory; in contrast, we are able to allow a small constant additive error in total variation distance between the sampled and ideal distributions.

3.
Nat Commun ; 9(1): 459, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386507

ABSTRACT

Device-independent cryptography goes beyond conventional quantum cryptography by providing security that holds independently of the quality of the underlying physical devices. Device-independent protocols are based on the quantum phenomena of non-locality and the violation of Bell inequalities. This high level of security could so far only be established under conditions which are not achievable experimentally. Here we present a property of entropy, termed "entropy accumulation", which asserts that the total amount of entropy of a large system is the sum of its parts. We use this property to prove the security of cryptographic protocols, including device-independent quantum key distribution, while achieving essentially optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests, suggests that the achieved parameters are technologically accessible. Our work hence provides the theoretical groundwork for experimental demonstrations of device-independent cryptography.

4.
Phys Rev Lett ; 116(8): 089901, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26967446

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.113.140501.

5.
Phys Rev Lett ; 113(14): 140501, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25325625

ABSTRACT

Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

6.
Philos Trans A Math Phys Eng Sci ; 370(1971): 3432-48, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22711867

ABSTRACT

We introduce a protocol through which a pair of quantum mechanical devices may be used to generate n random bits that are ε-close in statistical distance from n uniformly distributed bits, starting from a seed of uniform bits. The bits generated are certifiably random, based only on a simple statistical test that can be performed by the user, and on the assumption that the devices obey the no-signalling principle. No other assumptions are placed on the devices' inner workings: it is not necessary to even assume the validity of quantum mechanics.

7.
Phys Rev Lett ; 107(3): 030402, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21838336

ABSTRACT

A central question in our understanding of the physical world is how our knowledge of the whole relates to our knowledge of the individual parts. One aspect of this question is the following: to what extent does ignorance about a whole preclude knowledge of at least one of its parts? Relying purely on classical intuition, one would certainly be inclined to conjecture that a strong ignorance of the whole cannot come without significant ignorance of at least one of its parts. Indeed, we show that this reasoning holds in any noncontextual (NC) hidden-variable model (HV). Curiously, however, such a conjecture is false in quantum theory: we provide an explicit example where a large ignorance about the whole can coexist with an almost perfect knowledge of each of its parts. More specifically, we provide a simple information-theoretic inequality satisfied in any NC HV, but which can be arbitrarily violated by quantum mechanics.

SELECTION OF CITATIONS
SEARCH DETAIL
...