Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
BMC Res Notes ; 17(1): 132, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730318

ABSTRACT

OBJECTIVES: Bovine seminal plasma proteins perform several functions related to sperm function. Changes in the expression pattern or abundance of seminal proteins are related to changes in the fertilizing capacity of bulls. Considering the role of seminal plasma proteins in sperm function and animal reproduction, we investigated changes in the protein abundance profile in response to sperm morphological changes using a proteomic approach. DATADESCRIPTION: In our present investigation, we employed liquid chromatography coupled with mass spectrometry to elucidate the proteomic composition of seminal plasma obtained from Nellore bulls exhibiting varying percentages of sperm abnormalities. Following semen collection, seminal plasma was promptly isolated from sperm, and proteins were subsequently precipitated, enzymatically digested using porcine trypsin, and subjected to analysis utilizing the Acquity nano UHPLC System in conjunction with a mass spectrometer. This dataset encompasses a total of 297 proteins, marking the inaugural instance in which a comparative profile of seminal plasma proteins in young Nellore bulls, categorized by their sperm abnormality percentages, has been delineated using LC-MS/MS. The comprehensive nature of this dataset contributes pivotal proteomic insights, representing a noteworthy advancement in our understanding of the reproductive biology of the Nellore breed.


Subject(s)
Proteome , Semen , Spermatozoa , Animals , Male , Cattle , Semen/metabolism , Semen/chemistry , Proteome/metabolism , Spermatozoa/metabolism , Tandem Mass Spectrometry , Proteomics/methods , Seminal Plasma Proteins/metabolism , Seminal Plasma Proteins/genetics , Chromatography, Liquid
2.
Chemosphere ; 359: 142169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710416

ABSTRACT

With the increasing production and use of polyurethanes (PUs), it is necessary to develop sustainable techniques for the remediation of plastic pollution. The use of microorganisms capable of biodegrading PUs may be an environmentally desirable solution for controlling these plastic contaminants. To contribute to the discovery of alternatives for the mitigation of plastics in the environment, this study aimed to explore the potential of StaphylococcuswarneriUFV_01.21, isolated from the gut of Galleria mellonellalarvae, for biodegradation of PU in pure culture and microbial co-culture with Serratia liquefaciensL135. S. warneri grew using Impranil® PU as the sole carbon source in pure culture and co-culture. With six days of incubation, the biodegradation of Impranil® in Luria Bertani broth was 96, 88 and 76%, while in minimal medium, it was 58, 54 and 42% for S. warneri, S. liquefaciens, and co-culture, respectively. In addition, S. warneri in pure culture or co-culture was able to biodegrade, adhere and form biofilms on the surfaces of Impranil® disks and poly[4,4'-methylenebis (phenyl isocyanate)-alt-1,4-butanediol/di(propylene glycol)/polycaprolactone] (PCLMDI) films. Scanning electron microscopy also revealed biodegradation by detecting the formation of cracks, furrows, pores, and roughness on the surfaces of inoculated PU, both with pure culture and microbial co-culture. This study is the first to demonstrate the potential of S. warneriin PU biodegradation.


Subject(s)
Biodegradation, Environmental , Coculture Techniques , Polyurethanes , Staphylococcus , Polyurethanes/metabolism , Staphylococcus/metabolism , Biofilms , Plastics/metabolism , Serratia liquefaciens/metabolism
3.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
4.
Sci Rep ; 13(1): 19400, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938583

ABSTRACT

Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.


Subject(s)
Aluminum , Transcriptome , Aluminum/toxicity , Zea mays/genetics , Crops, Agricultural , Alternative Splicing
5.
Vet Sci ; 10(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37888562

ABSTRACT

This study aimed to evaluate the proteomic profile of seminal plasma from young Nellore bulls. We used 20 bulls aged between 19.8 and 22.7 months, divided into two groups according to the results of the Breeding Soundness Evaluation (BSE): approved (FIT n = 10) and not approved (UNFIT n = 10). The scrotal perimeter was measured and a semen collection was performed through electroejaculation. The percentage of sperm motility, mass motility, and sperm vigor were calculated using conventional microscopy, and the percentage of sperm abnormalities was calculated using phase-contrast microscopy of all ejaculates. Seminal plasma was separated from spermatozoa using centrifugation and processed for proteomic analysis by LC-MS/MS. Seminal plasma proteins were identified using MASCOT Daemon software v.2.4.0 and label-free quantification analysis was carried out by SCAFFOLD Q+ software v.4.0 using the Exponentially Modified Protein Abundance Index (emPAI) method. Functional classification of proteins was performed based on their genetic ontology terms using KOG. Functional cluster analysis was performed on DAVID. There were no differences in scrotal perimeter and physical semen characteristics between FIT and UNFIT groups of bulls. The percentage of sperm abnormalities was higher (p < 0.05) in the UNFIT group of bulls. A total of 297 proteins were identified for the two groups. There were a total of 11 differentially abundant proteins (p < 0.05), two of them more abundant in FIT bulls (Spermadhesin-1 and Ig gamma-1 chain C region) and nine in UNFIT bulls (Vasoactive intestinal peptide, Metalloproteinase inhibitor 2, Ig lambda-1 chain C regions, Protein FAM3C, Hemoglobin beta, Seminal ribonuclease, Spermadhesin 2, Seminal plasma protein BSP-30kDa, and Spermadhesin Z13). Spermadhesin-1 was the protein with the highest relative abundance (36.7%) in the seminal plasma among all bulls, corresponding to 47.7% for the FIT bulls and 25,7% for the UNFIT bulls. Posttranslational modification, protein turnover, and chaperones were the functional categories with the highest number of classified proteins. Protein functional annotation clusters were related to Phospholipid efflux, ATP binding, and chaperonin-containing T-complex. The differentially abundant proteins in the group of FIT bulls were related to sperm capacitation and protection against reactive species of oxygen. In contrast, differentially expressed proteins in the group of UNFIT bulls were related to motility inhibition, intramembrane cholesterol removal and oxidative stress. In conclusion, the proteomic profile of the seminal plasma of FIT bulls presents proteins with participation in several biological processes favorable to fertilization, while the proteins of the seminal plasma of UNFIT bulls indicate a series of alterations that can compromise the fertilizing capacity of the spermatozoa. In addition, the relative abundance of spermadhesin-1 found in the seminal plasma of young Nellore bulls could be studied as a reproductive parameter for selection.

6.
Appl Microbiol Biotechnol ; 107(21): 6573-6589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37658163

ABSTRACT

Spathaspora passalidarum is a xylose-fermenting microorganism promising for the fermentation of lignocellulosic hydrolysates. This yeast is more sensitive to ethanol than Saccharomyces cerevisiae for unclear reasons. An RNA-seq experiment was performed to identify transcriptional changes in S. passalidarum in response to ethanol and gain insights into this phenotype. The results showed the upregulation of genes associated with translation and the downregulation of genes encoding proteins involved in lipid metabolism, transporters, and enzymes from glycolysis and fermentation pathways. Our results also revealed that genes encoding heat-shock proteins and involved in antioxidant response were upregulated, whereas the osmotic stress response of S. passalidarum appears impaired under ethanol stress. A pseudohyphal morphology of S. passalidarum colonies was observed in response to ethanol stress, which suggests that ethanol induces a misperception of nitrogen availability in the environment. Changes in the yeast fatty acid profile were observed only after 12 h of ethanol exposure, coinciding with the recovery of the yeast xylose consumption ability. These findings suggest that the lack of fast membrane lipid adjustments, the halt in nutrient absorption and cellular metabolism, and the failure to induce the expression of osmotic stress-responsive genes are the main aspects underlying the low ethanol tolerance of S. passalidarum. KEY POINTS: • Ethanol stress halts Spathaspora passalidarum metabolism and fermentation • Genes encoding nutrient transporters showed downregulation under ethanol stress • Ethanol induces a pseudohyphal cell shape, suggesting a misperception of nutrients.

7.
Biol Reprod ; 109(6): 878-891, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37702320

ABSTRACT

Sexual rest is a transient condition, which compromises conception rates, characterized by large volumes of ejaculate with high percentages of dead sperm observed in bulls. The biochemical mechanisms leading to this ejaculate pattern are not fully understood. Six adult resting Nellore bulls were submitted to Breeding Soundness Evaluation by four consecutive semen collections through the electroejaculation method during a 30 min period. Each ejaculate had its semen phenotypic parameters; morphology and physical aspects were evaluated. To assess enzymatic activity (superoxide dismutase, catalase, and glutathione S-transferase), lipid peroxidation (concentrations of malondialdehyde and nitric oxide), fatty acid, and proteomic profile aliquots of spermatozoa from the first and fourth ejaculates were used. All sperm parameters differed between the first and fourth ejaculates. Spermatozoa from the first ejaculate showed lower enzymatic activity and a higher concentration of lipid peroxidation markers. Among the 19 identified fatty acids, 52.7% are polyunsaturated. Relative abundance analysis showed that C12:0 and C18:0 fatty acids differed between the first and fourth ejaculates, being the fourth ejaculate richer in spermatozoa. The proteomics analysis identified a total of 974 proteins in both sample groups (first and fourth ejaculates). The majority of identified proteins are related to cellular processes and signaling. Quantitative proteomics showed 36 differentially abundant proteins, 6 up-regulated proteins in the first ejaculate, and 30 up-regulated proteins in the fourth ejaculate. Spermatozoa from bulls at sexual rest have less antioxidant capacity, causing changes in their fatty acid composition and protein profile, which generates the observed sperm pattern and lower fertilization capacity.


Subject(s)
Proteomics , Semen , Male , Cattle , Animals , Spermatozoa , Semen Analysis/veterinary , Oxidative Stress , Fatty Acids , Sperm Motility
8.
Front Cell Infect Microbiol ; 13: 1178248, 2023.
Article in English | MEDLINE | ID: mdl-37274318

ABSTRACT

Introduction: Bacteriophages infecting human pathogens have been considered potential biocontrol agents, and studying their genetic content is essential to their safe use in the food industry. Tequatrovirus ufvareg1 is a bacteriophage named UFV-AREG1, isolated from cowshed wastewater and previously tested for its ability to inhibit Escherichia coli O157:H7. Methods: T. ufvareg1 was previously isolated using E. coli O157:H7 (ATCC 43895) as a bacterial host. The same strain was used for bacteriophage propagation and the one-step growth curve. The genome of the T. ufvareg1 was sequenced using 305 Illumina HiSeq, and the genome comparison was calculated by VIRIDIC and VIPTree. Results: Here, we characterize its genome and compare it to other Tequatrovirus. T. ufvareg1 virions have an icosahedral head (114 x 86 nm) and a contracted tail (117 x 23 nm), with a latent period of 25 min, and an average burst size was 18 phage particles per infected E. coli cell. The genome of the bacteriophage T. ufvareg1 contains 268 coding DNA sequences (CDS) and ten tRNA genes distributed in both negative and positive strains. T. ufvareg1 genome also contains 40 promoters on its regulatory regions and two rho-independent terminators. T. ufvareg1 shares an average intergenomic similarity (VIRIDC) of 88.77% and an average genomic similarity score (VipTree) of 88.91% with eight four reference genomes for Tequatrovirus available in the NCBI RefSeq database. The pan-genomic analysis confirmed the high conservation of Tequatrovirus genomes. Among all CDS annotated in the T. ufvareg1 genome, there are 123 core genes, 38 softcore genes, 94 shell genes, and 13 cloud genes. None of 268 CDS was classified as being exclusive of T. ufvareg1. Conclusion: The results in this paper, combined with other previously published findings, indicate that T. ufvareg1 bacteriophage is a potential candidate for food protection against E. coli O157:H7 in foods.


Subject(s)
Bacteriophages , Escherichia coli O157 , Humans , Escherichia coli O157/genetics , Bacteriophages/genetics , Genome , Genomics , Base Sequence
9.
3 Biotech ; 13(2): 67, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36726557

ABSTRACT

The genomic characterization of phages with biocontrol potential against food-related bacteria is essential to future commercial applications. Here, we report the genome sequence of P. fluorescens phage UFJF_PfSW6 and a taxonomy proposal framing it as a novel phage species with great potential for biocontrol in the dairy industry. It showed a short linear double-stranded DNA genome (~ 39 kb) with a GC content of 21.2% and short DTR sequences of 215 bp. The genome of the UFJF_PfSW6 phage contains 48 genes with a unidirectional organization into three functional modules: DNA replication and metabolism, structural proteins, and DNA packing and host lysis. Thirteen promoters from phage and nine from host regulate these genes, and six Rho-independent terminators control their transcription. Twenty-seven genes of the UFJF_PfSW6 encode proteins with predicted functions. Comparative genome analysis revealed that the UFJF_PfSW6 genome shares 84% of genomic similarity with the genome sequence of the Pijolavirus PspYZU08, the only representative of the genus recognized so far. Therefore, our findings indicate that both phages are of the same genus, but UFJF_PfSW6 a is a novel Pijolavirus specie belonging to the Studiervirinae subfamily. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03485-3.

10.
Front Microbiol ; 13: 918706, 2022.
Article in English | MEDLINE | ID: mdl-36090116

ABSTRACT

Mastitis, mainly caused by bacterial intramammary infections, is the main problem in the breeding of dairy animals. The inflammations of the mammary gland is separated by types of mastitis, being subclinical, clinical, and the most severe, gangrenous mastitis. Here, we used 16S rRNA amplicon sequencing to characterize the bacterial microbiota of goat milk in the different types of goat mastitis caused by bacteria. We used 72 goat milk samples from a region of the state of Minas Gerais in Brazil, of which 12 were from clinically healthy animals, 42 from animals diagnosed with subclinical mastitis, 16 from animals with clinical mastitis, and 2 from animals with gangrenous mastitis. The group related to gangrenous mastitis was the most divergent in terms of alpha and beta diversity. The most abundant genus among samples of the groups was Staphylococcus spp., and we found a high abundance of Mycoplasma sp. in the milk of animals diagnosed with clinical mastitis. The most statistically relevant microorganisms among the groups were Prevotella sp., Ruminococcaceae, Prevotella ruminicola sp., and Providencia sp. We highlight a new association of bacterial agents in gangrenous mastitis among Escherichia sp./Shigella sp. and Enterococcus sp. and provide the second report of the genus Alkalibacterium sp., in milk samples. Only the taxa Staphylococcus sp., Bacteroides sp., Enterococcus, and Brevidabacterium sp., were present in all groups. The superpathway of L-tryptophan biosynthesis metabolites and the sucrose degradation III (sucrose invertase) pathway were the most prominent ones among the groups. In this study, we demonstrate how a rich microbiota of goat milk from healthy animals can be altered during the aggravation of different types of mastitis, in addition to demonstrating new bacterial genera in milk not previously detected in other studies as well as new associations between agents.

11.
Probiotics Antimicrob Proteins ; 14(4): 603-612, 2022 08.
Article in English | MEDLINE | ID: mdl-35525881

ABSTRACT

Endolysins are bacteriophage-derived lytic enzymes with antimicrobial activity. The action of endolysins against Gram-negative bacteria remains a challenge due to the physical protection of the outer membrane. However, recent research has demonstrated that signal-anchor-release (SAR) endolysins permeate the outer membrane of Gram-negative bacteria. This study investigates 2628 putative endolysin genes identified in 183,298 bacteriophage genomes. Previously, bioinformatic approaches resulted in a database of 66 SAR endolysins. This manuscript almost doubles the list with 53 additional SAR endolysin candidates. Forty-eight of the putative SAR endolysins described in this study contained one muramidase catalytic domain, and five included additional cell wall-binding domains at the C-terminus. For the moment, SAR domains are found in four protein families: glycoside hydrolase family 19 (GH19), glycoside hydrolase family 24 (GH24), glycoside hydrolase family 25 (GH25), and glycoside hydrolase family 108 (GH108). These SAR lysis are clustered in eight groups based on biochemical properties and domain presence/absence. Therefore, in this study, we expand the arsenal of endolysin candidates that might act against Gram-negative bacteria and develop a consult database for antimicrobial proteins derived from bacteriophages.


Subject(s)
Anti-Infective Agents , Bacteriophages , Anti-Infective Agents/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Endopeptidases/chemistry , Endopeptidases/genetics , Glycoside Hydrolases/metabolism , Gram-Negative Bacteria , Metagenomics
12.
Viruses ; 14(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35337036

ABSTRACT

In this study, we have presented the genomic characterisation of UFJF_PfDIW6, a novel lytic Pseudomonas fluorescens-phage with potential for biocontrol in the dairy industry. This phage showed a short linear double-stranded DNA genome (~42 kb) with a GC content of 58.3% and more than 50% of the genes encoding proteins with unknown functions. Nevertheless, UFJF_PfDIW6's genome was organised into five functional modules: DNA packaging, structural proteins, DNA metabolism, lysogenic, and host lysis. Comparative genome analysis revealed that the UFJF_PfDIW6's genome is distinct from other viral genomes available at NCBI databases, displaying maximum coverages of 5% among all alignments. Curiously, this phage showed higher sequence coverages (38-49%) when aligned with uncharacterised prophages integrated into Pseudomonas genomes. Phages compared in this study share conserved locally collinear blocks comprising genes of the modules' DNA packing and structural proteins but were primarily differentiated by the composition of the DNA metabolism and lysogeny modules. Strategies for taxonomy assignment showed that UFJF_PfDIW6 was clustered into an unclassified genus in the Podoviridae clade. Therefore, our findings indicate that this phage could represent a novel genus belonging to the Podoviridae family.


Subject(s)
Bacteriophages , Podoviridae , Pseudomonas Phages , Pseudomonas fluorescens , Bacteriophages/genetics , DNA , DNA, Viral/genetics , Dairying , Genome, Viral , Phylogeny , Podoviridae/genetics , Pseudomonas Phages/genetics , Pseudomonas fluorescens/genetics
13.
Food Microbiol ; 101: 103892, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34579852

ABSTRACT

In this study, P. fluorescens-infecting phages were isolated, characterized, and evaluated to their potential to control the bacterial counts and, consequently, the proteolytic spoilage of raw milk during cold storage. The UFJF_PfDIW6 and UFJF_PfSW6 phages showed titers of 9.7 and 7.6 log PFU/ml; latent period of 115 and 25 min, and burst size of 145 and 25 PFU/infected cell, respectively. They also were highly specific to the host bacterium, morphologically classified as the Podoviridae family, stable at pH 5 to 11 and were not inactivated at 63 °C or 72 °C for 30 min. These phages found to be effective against P. fluorescens, reducing bacterial count throughout the entire exponential growth phase in broth formulated with milk at both 4 °C and 10 °C. This effect on bacteria growth led to inhibition by at least 2 days in proteases production, delaying the degradation of milk proteins. When applied together in raw milk stored at 4 °C, they reduced the total bacteria, psychrotrophic, and Pseudomonas by 3 log CFU/ml. This study's findings indicate that these phages have a great potential to prevent the growth of Pseudomonas and, consequently, to retard proteolytic spoilage of raw milk during chilled storage.


Subject(s)
Bacteriophages , Food Contamination/prevention & control , Food Storage , Milk/microbiology , Pseudomonas fluorescens/virology , Animals , Cold Temperature , Food Microbiology , Peptide Hydrolases , Pseudomonas fluorescens/growth & development
14.
Sci Rep ; 11(1): 19644, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608228

ABSTRACT

To date, the investigation of genes involved in Al resistance has focused mainly on microarrays and short periods of Al exposure. We investigated genes involved in the global response under Al stress by tracking the expression profile of two inbred popcorn lines with different Al sensitivity during 72 h of Al stress. A total of 1003 differentially expressed genes were identified in the Al-sensitive line, and 1751 were identified in the Al-resistant line, of which 273 were shared in both lines. Genes in the category of "response to abiotic stress" were present in both lines, but there was a higher number in the Al-resistant line. Transcription factors, genes involved in fatty acid biosynthesis, and genes involved in cell wall modifications were also detected. In the Al-resistant line, GST6 was identified as one of the key hub genes by co-expression network analysis, and ABC6 may play a role in the downstream regulation of CASP-like 5. In addition, we suggest a class of SWEET transporters that might be involved in the regulation of vacuolar sugar storage and may serve as mechanisms for Al resistance. The results and conclusions expand our understanding of the complex mechanisms involved in Al toxicity and provide a platform for future functional analyses and genomic studies of Al stress in popcorn.


Subject(s)
Aluminum/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Zea mays/genetics , Zea mays/metabolism , Aluminum/toxicity , Computational Biology/methods , Gene Expression Regulation, Plant/drug effects , Molecular Sequence Annotation , Plant Breeding
15.
Res Microbiol ; 172(6): 103869, 2021.
Article in English | MEDLINE | ID: mdl-34333135

ABSTRACT

Due to the emergence of multidrug-resistant bacteria, bacteriophages have become a viable alternative in controlling bacterial growth or biofilm formation. Biofilm is formed by extracellular polymeric substances (EPS) and is one of the factors responsible for increasing bacterial resistance. Bacteriophages have been studied as a bacterial control agent by use of phage enzymes or due to their bactericidal activities. A specific phage against Serratia marcescens was isolated in this work and was evaluated its biological and genomic aspects. The object of this study was UFV01, a bacteriophage belonging to the Podoviridae family, genus Teseptimavirus (group of lytic viruses), specific to the species S. marcescens, which may be related to several amino acid substitutions in the virus tail fibers. Despite this high specificity, the phage reduced the biofilm formation of several Escherichia coli strains without infecting them. UFV01 presents a relationship with phages of the genus Teseptimavirus, although it does not infect any of the E. coli strains evaluated, as these others do. All the characteristics make the phage an interesting alternative in biofilm control in hospital environments since small breaks in the biofilm matrix can lead to a complete collapse.


Subject(s)
Biofilms/growth & development , Escherichia coli/growth & development , Podoviridae/physiology , Serratia liquefaciens/growth & development , Serratia marcescens/growth & development , Serratia marcescens/virology , Amino Acid Substitution , Genome, Viral , Host Specificity , Hydrogen-Ion Concentration , Microbial Interactions , Podoviridae/classification , Podoviridae/genetics , Podoviridae/isolation & purification , Protein Domains , Temperature , Viral Tail Proteins/chemistry , Virus Latency
16.
Sci Rep ; 11(1): 17252, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446803

ABSTRACT

Staphylococcus aureus is one of the main bacterial agents responsible for cases of mastitis in ruminants, playing an important role in the persistence and chronicity of diseases treated with antimicrobials. Using the multilocus sequence typing technique, network approaches and study of the population diversity of microorganisms, we performed analyzes of S. aureus (ES-GPM) isolated from goats with persistent mastitis (GPM). The most strains of ES-GPM were categorically different phylogenetically from the others and could be divided into two lineages: one with a majority belonging to ES-GPM and the other to varied strains. These two lineages were separated by 27 nuclear polymorphisms. The 43 strains comprised 22 clonal complexes (CCs), of which the ES-GPM strains were present in CC133, CC5 and a new complex formed by the sequence type 4966. The genetic diversity of some alleles showed be greater diversity and polymorphism than others, such as of the aroE and yqiL genes less than glpF gene. In addition, the sequences ES-GPM to the arc gene and glpF alleles showed the greatest number of mutations for ES-GPM in relation to non-ES-GPM. Therefore, this study identified genetic polymorphisms characteristic of S. aureus isolated from milk of goats diagnosed with persistent mastitis after the failed treatment with the antibiotic enrofloxacin. This study may help in the future to identify and discriminate this agent in cases of mastitis, and with that, the most appropriate antibiotic treatment can be performed in advance of the appearance of persistent mastitis caused by the agent, reducing the chances of premature culling and animal suffering.


Subject(s)
Enrofloxacin/pharmacology , Genetic Variation , Goat Diseases/drug therapy , Mastitis/drug therapy , Multilocus Sequence Typing/methods , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Animals , Anti-Bacterial Agents/pharmacology , Brazil , Drug Resistance, Bacterial/genetics , Female , Geography , Goat Diseases/diagnosis , Goat Diseases/microbiology , Goats , Mastitis/diagnosis , Mastitis/microbiology , Microbial Sensitivity Tests/methods , Milk/microbiology , Phylogeny , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcus aureus/classification , Staphylococcus aureus/physiology
17.
Arch Virol ; 166(5): 1463-1468, 2021 May.
Article in English | MEDLINE | ID: mdl-33718993

ABSTRACT

Porcine circovirus 3 (PCV3) is a recently emerged circovirus discovered in 2016 that has drawn the attention of the swine industry worldwide. In this study, we evaluated the genetic diversity of PCV3 strains on pig farms. A total of 261 samples from sows, weaning pigs, growing pigs, and stillborn/mummified fetuses were analyzed by quantitative real-time PCR. The results revealed that at least two main lineages of PCV3 are circulating in Brazil. For the first time, it was possible to detect the presence of two different PCV3 strains in the same host.


Subject(s)
Circoviridae Infections/veterinary , Circovirus/genetics , Coinfection/veterinary , Swine Diseases/virology , Animals , Brazil/epidemiology , Circoviridae Infections/virology , Circovirus/isolation & purification , Coinfection/virology , DNA, Viral/genetics , Farms , Genetic Variation , Genotype , Open Reading Frames/genetics , Phylogeny , Swine , Viral Load
18.
PLoS One ; 16(3): e0236853, 2021.
Article in English | MEDLINE | ID: mdl-33661948

ABSTRACT

The main objectives of this study were to evaluate the prediction performance of genomic and near-infrared spectroscopy (NIR) data and whether the integration of genomic and NIR predictor variables can increase the prediction accuracy of two feedstock quality traits (fiber and sucrose content) in a sugarcane population (Saccharum spp.). The following three modeling strategies were compared: M1 (genome-based prediction), M2 (NIR-based prediction), and M3 (integration of genomics and NIR wavenumbers). Data were collected from a commercial population comprised of three hundred and eighty-five individuals, genotyped for single nucleotide polymorphisms and screened using NIR spectroscopy. We compared partial least squares (PLS) and BayesB regression methods to estimate marker and wavenumber effects. In order to assess model performance, we employed random sub-sampling cross-validation to calculate the mean Pearson correlation coefficient between observed and predicted values. Our results showed that models fitted using BayesB were more predictive than PLS models. We found that NIR (M2) provided the highest prediction accuracy, whereas genomics (M1) presented the lowest predictive ability, regardless of the measured traits and regression methods used. The integration of predictors derived from NIR spectroscopy and genomics into a single model (M3) did not significantly improve the prediction accuracy for the two traits evaluated. These findings suggest that NIR-based prediction can be an effective strategy for predicting the genetic merit of sugarcane clones.


Subject(s)
Genomics/methods , Plant Breeding/methods , Quantitative Trait, Heritable , Saccharum/genetics , Spectroscopy, Near-Infrared/methods , Dietary Fiber/metabolism , Genomics/standards , Saccharum/metabolism , Sensitivity and Specificity , Spectroscopy, Near-Infrared/standards , Sugars/metabolism
20.
Res Microbiol ; 172(2): 103794, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33347948

ABSTRACT

Treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria is challenging, a potential solution for which is the use of bacteriophage-derived lytic enzymes. However, the exogenous action of bacteriophage lysins against Gram-negative bacteria is hindered due to the presence of an impermeable outer membrane in these bacteria. Nevertheless, recent research has demonstrated that some lysins are capable of permeating the outer membrane of Gram-negative bacteria with the help of signal peptides. In the present study, we investigated the genomes of 309 bacteriophages that infect Gram-negative pathogens of clinical interest in order to determine the evolutionary markers of signal peptide-containing lysins. Complete genomes displayed 265 putative lysins, of which 17 (6.41%) contained signal-arrest-release motifs and 41 (15.47%) contained cleavable signal peptides. There was no apparent relationship between host specificity and lysin diversity. Nevertheless, the evolution of lysin genes might not be independent of the rest of the bacteriophage genome once pan-genome clustering and lysin diversity appear to be correlated. In addition, signal peptide- and signal-arrest-release-containing lysins were monophyletically distributed in the protein cladogram, suggesting that the natural selection of holin-independent lysins is divergent. Our study screened 58 (21.89%) out of 265 potential candidates for in vitro experimentation against MDR bacteria.


Subject(s)
Bacteriophages/enzymology , Bacteriophages/genetics , Gram-Negative Bacteria/virology , Protein Sorting Signals , Viral Proteins/genetics , Amino Acid Motifs , Bacterial Outer Membrane , Bacteriolysis , Biodiversity , Drug Resistance, Multiple, Bacterial , Evolution, Molecular , Genome, Bacterial , Genome, Viral , Gram-Negative Bacteria/genetics , Viral Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...