Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895033

ABSTRACT

Three basil plant varieties (Ocimum basilicum var. Genovese, Ocimum × citriodorum, and Ocimum basilicum var. purpurascens) were grown under moderate light (about 300 µmol photons m-2 s-1) in a glasshouse or growth chamber and then either transferred to an open field (average daily dose: 29.2 kJ m-2 d-1) or additionally exposed to UV-B irradiation in a growth chamber (29.16 kJ m-2 d-1), to reveal the variety-specific and light-specific acclimation responses. Total antioxidant capacity (TAC), phenolic profile, ascorbate content, and class III peroxidase (POD) activity were used to determine the antioxidant status of leaves under all four light regimes. Exposure to high solar irradiation at the open field resulted in an increase in TAC, total hydroxycinnamic acids (HCAs, especially caffeic acid), flavonoids, and epidermal UV-absorbing substances in all three varieties, as well as a two-fold increase in the leaf dry/fresh weight ratio. The supplemental UV-B irradiation induced preferential accumulation of HCAs (rosmarinic acid) over flavonoids, increased TAC and POD activity, but decreased the ascorbate content in the leaves, and inhibited the accumulation of epidermal flavonoids in all basil varieties. Furthermore, characteristic leaf curling and UV-B-induced inhibition of plant growth were observed in all basil varieties, while a pro-oxidant effect of UV-B was indicated with H2O2 accumulation in the leaves and spotty leaf browning. The extent of these morphological changes, and oxidative damage depended on the basil cultivar, implies a genotype-specific tolerance mechanism to high doses of UV-B irradiation.


Subject(s)
Antioxidants , Ocimum basilicum , Antioxidants/pharmacology , Sunlight , Hydrogen Peroxide , Ascorbic Acid , Flavonoids , Plant Leaves
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762566

ABSTRACT

Chloroplast movement rapidly ameliorates the effects of suboptimal light intensity by accumulating along the periclinal cell walls, as well as the effects of excess light by shifting to the anticlinal cell walls. These acclimation responses are triggered by phototropins located at the plasma membrane and chloroplast envelope. Here, we used a recently developed non-invasive system sensitive to very small changes in red light leaf transmittance to perform long-term continuous measurements of dark-light transitions. As a model system, we used variegated Pelargonium zonale leaves containing green sectors (GS) with fully developed chloroplasts and achlorophyllous, white sectors (WS) with undifferentiated plastids, and higher phototropin expression levels. We observed biphasic changes in the red-light transmittance and oscillations triggered by medium intensities of white light, described by a transient peak preceded by a constant decrease in transmittance level. A slight change in red-light transmittance was recorded even in WS. Furthermore, the chloroplast position at lower light intensities affected the rapid light curves, while high light intensity decreased saturated electron transport, maximum quantum efficiency of photosystem II, and increased non-photochemical quenching of chlorophyll fluorescence and epidermal flavonoids. Our results extend the knowledge of light-dependent chloroplast movements and thus contribute to a better understanding of their role in regulating photosynthesis under fluctuating light conditions.

3.
Insects ; 14(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37233083

ABSTRACT

The Heterogynidae are a small family of moths consisting of a single genus Heterogynis and sixteen described species distributed in the Mediterranean region. A species new to science, Heterogynis serbica sp. nov., is described from the locality of Srebrenac, Mt. Kopaonik, Republic of Serbia, Balkan Peninsula, by applying an integrative taxonomic approach using morpho-anatomical characteristics, wing morphometics and DNA barcoding. Male genitalia, scanning electron micrographs of adult male head anatomy, abdominal tergites/sternites, cocoons and habitats of the closely related species H. serbica sp. nov. and H. zikici are discussed and illustrated. Photographs of adult males and females, cocoons, plants in which the cocoons were found and habitats are shown. Importantly, marked differences in genital structure and other morphological characters were noted. These differences were confirmed with forewing morphometrics and COI-based DNA barcoding results. Additionally, DNA barcodes for H. serbica sp. nov. and H. zikici were compared against previously available data for the genus to evaluate the phylogenetic relationships. We conclude that deep, previously unknown and unexpected intrageneric morphological diversity exists in the genus Heterogynis.

4.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982362

ABSTRACT

The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin-Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.


Subject(s)
Pelargonium , Pelargonium/genetics , Pelargonium/metabolism , Transcriptome , Plant Breeding , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism
5.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768594

ABSTRACT

Plants are inevitably exposed to extreme climatic conditions that lead to a disturbed balance between the amount of absorbed energy and their ability to process it. Variegated leaves with photosynthetically active green leaf tissue (GL) and photosynthetically inactive white leaf tissue (WL) are an excellent model system to study source-sink interactions within the same leaf under the same microenvironmental conditions. We demonstrated that under excess excitation energy (EEE) conditions (high irradiance and lower temperature), regulated metabolic reprogramming in both leaf tissues allowed an increased consumption of reducing equivalents, as evidenced by preserved maximum efficiency of photosystem II (ФPSII) at the end of the experiment. GL of the EEE-treated plants employed two strategies: (i) the accumulation of flavonoid glycosides, especially cyanidin glycosides, as an alternative electron sink, and (ii) cell wall stiffening by cellulose, pectin, and lignin accumulation. On the other hand, WL increased the amount of free amino acids, mainly arginine, asparagine, branched-chain and aromatic amino acids, as well as kaempferol and quercetin glycosides. Thus, WL acts as an important energy escape valve that is required in order to maintain the successful performance of the GL sectors under EEE conditions. Finally, this role could be an adaptive value of variegation, as no consistent conclusions about its ecological benefits have been proposed so far.


Subject(s)
Carbon , Nitrogen , Carbon/metabolism , Nitrogen/metabolism , Antioxidants/metabolism , Plant Leaves/metabolism , Glycosides/metabolism
6.
Cells ; 11(11)2022 05 24.
Article in English | MEDLINE | ID: mdl-35681426

ABSTRACT

Following Alzheimer's, Parkinson's disease (PD) is the second-most common neurodegenerative disorder, sharing an unclear pathophysiology, a multifactorial profile, and massive social costs worldwide. Despite this, no disease-modifying therapy is available. PD is tightly associated with α-synuclein (α-Syn) deposits, which become organised into insoluble, amyloid fibrils. As a typical intrinsically disordered protein, α-Syn adopts a monomeric, random coil conformation in an aqueous solution, while its interaction with lipid membranes drives the transition of the molecule part into an α-helical structure. The central unstructured region of α-Syn is involved in fibril formation by converting to well-defined, ß-sheet rich secondary structures. Presently, most therapeutic strategies against PD are focused on designing small molecules, peptides, and peptidomimetics that can directly target α-Syn and its aggregation pathway. Other approaches include gene silencing, cell transplantation, stimulation of intracellular clearance with autophagy promoters, and degradation pathways based on immunotherapy of amyloid fibrils. In the present review, we sum marise the current advances related to α-Syn aggregation/neurotoxicity. These findings present a valuable arsenal for the further development of efficient, nontoxic, and non-invasive therapeutic protocols for disease-modifying therapy that tackles disease onset and progression in the future.


Subject(s)
Intrinsically Disordered Proteins , Parkinson Disease , Amyloid/metabolism , Humans , Intrinsically Disordered Proteins/chemistry , Parkinson Disease/metabolism , Parkinson Disease/therapy , Protein Conformation, beta-Strand , alpha-Synuclein/metabolism
7.
Plants (Basel) ; 11(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35567200

ABSTRACT

The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement.

8.
Int J Mol Sci ; 23(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408906

ABSTRACT

Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.


Subject(s)
Craterostigma , Desiccation , Embryonic Development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Water/metabolism
9.
Anal Bioanal Chem ; 412(30): 8299-8312, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33037906

ABSTRACT

Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-ß-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-ß-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.


Subject(s)
Magnoliopsida/chemistry , Plant Leaves/chemistry , Plant Proteins/isolation & purification , Proteomics/methods , Water/chemistry , Chromatography, Liquid/methods , Desiccation , Electrophoresis, Polyacrylamide Gel , Tandem Mass Spectrometry/methods
10.
Plants (Basel) ; 9(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899651

ABSTRACT

Water deficit has a global impact on plant growth and crop yield. Climate changes are going to increase the intensity, duration and frequency of severe droughts, particularly in southern and south-eastern Europe, elevating the water scarcity issues. We aimed to assess the contribution of endogenous abscisic acid (ABA) in the protective mechanisms against water deficit, including stomatal conductance, relative water potential and the accumulation of osmoprotectants, as well as on growth parameters. To achieve that, we used a suitable model system, ABA-deficient tomato mutant, flacca and its parental line. Flacca mutant exhibited constitutively higher levels of soluble sugars (e.g., galactose, arabinose, sorbitol) and free amino acids (AAs) compared with the wild type (WT). Water deficit provoked the strong accumulation of proline in both genotypes, and total soluble sugars only in flacca. Upon re-watering, these osmolytes returned to the initial levels in both genotypes. Our results indicate that flacca compensated higher stomatal conductance with a higher constitutive level of free sugars and AAs. Additionally, we suggest that the accumulation of AAs, particularly proline and its precursors and specific branched-chain AAs in both, glucose and sucrose in flacca, and sorbitol in WT, could contribute to maintaining growth rate during water deficit and recovery in both tomato genotypes.

11.
3 Biotech ; 10(6): 286, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32550105

ABSTRACT

Resurrection plant Ramonda serbica is a suitable model to investigate mechanisms of desiccation tolerance, while variegated Pelargonium zonale has been proven to serve as an excellent model for the metabolite allocation between sink tissue and source tissue within the same organ. However, the genomes of these plants are still not sequenced, limiting their application in molecular studies. To investigate the transcript abundance by next-generation sequencing, high-quality RNA input is required. Leaves of both P. zonale and R. serbica are rich in polyphenols that interfere with high-quality RNA extraction by common protocols. Moreover, low water content and high amount of sugars and other osmoprotectants in desiccated R. serbica leaves present the additional challenge in total RNA extraction. Here, we evaluated and compared several already established TRIzol- and CTAB-based protocols aiming to develop the efficient, simple and low-cost methods for the extraction of the satisfactory yield RNA of great purity and integrity, required for the construction of high-quality cDNA libraries. Our results show that the CTAB-based protocol (i.e. CTAB 1b) enabled the extraction of high-quality RNA from photosynthetically active and non-photosynthetically active leaf sectors of P. zonale, with high RIN values. On the other hand, TRIzol-based protocol provided a high RNA yield with low contamination and high RNA integrity even in desiccated leaves of R. serbica. We envisage that the proposed protocol would be suitable for the RNA extractions from other desiccated organs (e.g. seeds, grains, pollen grains).

12.
Plant Physiol Biochem ; 146: 363-373, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31786508

ABSTRACT

In Medicago truncatula, nitrate, acting as a signal perceived by NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER FAMILY 6.8 (MtNPF6.8), inhibits primary root growth through a reduction of root cell elongation. Since reactive oxygen species (ROS) produced and converted in root tip (O2•- → H2O2 → •OH) have been reported to control cell elongation, the impact of nitrate on the distribution of these ROS in the primary root of M. truncatula was analyzed. We found that nitrate reduced the content of O2•-, H2O2 and •OH in the root tip of three wild type genotypes sensitive to nitrate (R108, DZA, A17), inhibition of root growth and O2•- accumulation being highly correlated. Nitrate also modified the capacity of R108 root tip to produce or remove ROS. The ROS content decrease observed in R108 in response to nitrate is linked to changes in peroxidase activity (EC1.11.1.7) with an increase in peroxidative activity that scavenge H2O2 and a decrease in hydroxylic activity that converts H2O2 into •OH. These changes impair the accumulation of H2O2 and then the accumulation of •OH, the species responsible for cell wall loosening and cell elongation. Accordingly, nitrate inhibitory effect was abolished by externally added H2O2 or mimicked by KI, an H2O2 scavenger. In contrast, nitrate has no effect on ROS production or removal capacities in npf6.8-2, a knockdown line insensitive to nitrate, affected in the nitrate transporter MtNPF6.8 (in R108 background) by RNAi. Altogether, our data show that ROS are mediators acting downstream of MtNPF6.8 in the nitrate signaling pathway.


Subject(s)
Medicago truncatula , Hydrogen Peroxide , Meristem , Plant Roots , Reactive Oxygen Species
13.
Bull Environ Contam Toxicol ; 99(6): 706-712, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29032386

ABSTRACT

We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.


Subject(s)
Environmental Monitoring/methods , Poaceae/metabolism , Soil Pollutants/analysis , Environmental Pollution/analysis , Metals/analysis , Plant Leaves/chemistry , Seasons , Silicon , Soil/chemistry , Spectrometry, X-Ray Emission , Trace Elements/analysis , Trees/chemistry
14.
J Plant Physiol ; 206: 25-39, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27688091

ABSTRACT

In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100µmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.


Subject(s)
Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Paraquat/toxicity , Pelargonium/drug effects , Pelargonium/metabolism , Plant Leaves/metabolism , Plant Vascular Bundle/metabolism , Sunlight , Ascorbic Acid/metabolism , Catalase/metabolism , Extracellular Space/metabolism , Glutathione/metabolism , Pelargonium/radiation effects , Peroxidases/metabolism , Photosynthesis/drug effects , Photosynthesis/radiation effects , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/radiation effects , Plant Stomata/drug effects , Plant Stomata/physiology , Plant Stomata/radiation effects , Plant Vascular Bundle/drug effects , Plant Vascular Bundle/radiation effects
15.
Plant Physiol Biochem ; 93: 44-55, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25661975

ABSTRACT

We studied the specific effects of high photosynthetically active radiation (PAR, 400-700 nm) and ecologically relevant UV-B radiation (0.90 W m(-2)) on antioxidative and phenolic metabolism by exploiting the green-white leaf variegation of Pelargonium zonale plants. This is a suitable model system for examining "source-sink" interactions within the same leaf. High PAR intensity (1350 µmol m(-2) s(-1)) and UV-B radiation induced different responses in green and white leaf sectors. High PAR intensity had a greater influence on green tissue, triggering the accumulation of phenylpropanoids and flavonoids with strong antioxidative function. Induced phenolics, together with ascorbate, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) provided efficient defense against potential oxidative pressure. UV-B-induced up-regulation of non-phenolic H2O2 scavengers in green leaf sectors was greater than high PAR-induced changes, indicating a UV-B role in antioxidative defense under light excess; on the contrary, minimal effects were observed in white tissue. However, UV-B radiation had greater influence on phenolics in white leaf sections compared to green ones, inducing accumulation of phenolic glycosides whose function was UV-B screening rather than antioxidative. By stimulation of starch and sucrose breakdown and carbon allocation in the form of soluble sugars from "source" (green) tissue to "sink" (white) tissue, UV-B radiation compensated the absence of photosynthetic activity and phenylpropanoid and flavonoid biosynthesis in white sectors.


Subject(s)
Carbon/metabolism , Flavonoids/biosynthesis , Geraniaceae/metabolism , Plant Leaves/metabolism , Ultraviolet Rays , Antioxidants/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Catalase/genetics , Catalase/metabolism , Flavonoids/genetics , Geraniaceae/genetics , Hydrogen Peroxide/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Plant Cell Environ ; 38(5): 968-79, 2015 May.
Article in English | MEDLINE | ID: mdl-25311561

ABSTRACT

We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 µmol m(-2) s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function.


Subject(s)
Antioxidants/metabolism , Flavonoids/metabolism , Photosynthesis/radiation effects , Plant Leaves/radiation effects , Plectranthus/radiation effects , Carbon Dioxide/metabolism , Chlorophyll/radiation effects , Chloroplasts/radiation effects , Chloroplasts/ultrastructure , Phenols/metabolism , Pigments, Biological/metabolism , Plant Leaves/metabolism , Plectranthus/metabolism , Protein Carbonylation/radiation effects , Ultraviolet Rays
17.
Physiol Plant ; 145(4): 604-18, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22304366

ABSTRACT

Lolium perenne (cv. AberDart) was grown at 14 locations along a latitudinal gradient across Europe (37-68°N) to study the impact of ultraviolet radiation (UV) and climate on aboveground growth and foliar UV-B absorbing compounds. At each location, plants were grown outdoors for 5 weeks in a replicated UV-B filtration experiment consisting of open, UV-B transparent (cellulose diacetate) and UV-B opaque (polyester) environments. Fourier transform-infrared spectroscopy was used to compare plant metabolite profiles in relation to treatment and location. UV radiation and climatic parameters were determined for each location from online sources and the data were assessed using a combination of anova and multiple regression analyses. Most of the variation in growth between the locations was attributable to the combination of climatic parameters, with minimum temperature identified as an important growth constraint. However, no single environmental parameter could consistently account for the variability in plant growth. Concentrations of foliar UV-B absorbing compounds showed a positive trend with solar UV across the latitudinal gradient; however, this relationship was not consistent in all treatments. The most striking experimental outcome from this study was the effect of presence or absence of filtration frames on UV-absorbing compounds. Overall, the study demonstrates the value of an European approach in studying the impacts of natural UV across a large latitudinal gradient. We have shown the feasibility of coordinated UV filtration at multiple sites but have also highlighted the need for open controls and careful interpretation of plant responses.


Subject(s)
Lolium/radiation effects , Ultraviolet Rays , Climate , Europe , Lolium/growth & development , Plant Shoots/growth & development
18.
Physiol Plant ; 140(3): 209-24, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20626644

ABSTRACT

Oxidative stress is one aspect of metal toxicity. Zinc, although unable to perform univalent oxido-reduction reactions, can induce the oxidative damage of cellular components and alter antioxidative systems. Verbascum thapsus L. plants that were grown hydroponically were exposed to 1 and 5 mM Zn²+. Reactive oxygen species (ROS) accumulation was demonstrated by the fluorescent probe H2 DCFDA and EPR measurements. The extent of zinc-induced oxidative damage was assessed by measuring the level of protein carbonylation. Activities and isoform profiles of some antioxidant enzymes and the changes in ascorbate and total phenolic contents of leaves and roots were determined. Stunted growth because of zinc accumulation, preferentially in the roots, was accompanied by H2O2 production in the leaf and root apoplasts. Increased EPR signals of the endogenous oxidant quinhydrone, •CH3 and •OH, were found in the cell walls of zinc-treated plants. The activities of the antioxidative enzymes ascorbate peroxidase (APX) (EC 1.11.1.11), soluble superoxide dismutase (SOD) (EC 1.15.1.1), peroxidase (POD), (EC 1.11.1.7) and monodehydroascorbate reductase (EC 1.6.5.4) were increased; those of glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1) and ascorbate oxidase (AAO) (EC 1.10.3.3) were decreased with zinc treatment. Zinc induced a cell-wall-bound SOD isoform in both organs. Leaves accumulated more ascorbate and phenolics in comparison to roots. We propose a mechanism for zinc-promoted oxidative stress in V. thapsus L. through the generation of charge transfer complexes and quinhydrone because of phenoxyl radical stabilisation by Zn²+ in the cell wall. Our results suggest that the SOD and APX responses are mediated by ROS accumulation in the apoplast. The importance of the POD/Phe/AA (ascorbic acid) scavenging system in the apoplast is also discussed.


Subject(s)
Cell Wall/metabolism , Hydroquinones/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Verbascum/drug effects , Zinc/adverse effects , Ascorbate Peroxidases , Ascorbic Acid/metabolism , NADH, NADPH Oxidoreductases/metabolism , Peroxidases/metabolism , Phenols/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Protein Carbonylation , Superoxide Dismutase/metabolism , Verbascum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...