Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 8(3): 410-423, 2023 03.
Article in English | MEDLINE | ID: mdl-36759752

ABSTRACT

Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.


Subject(s)
Bacteriophages , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Metagenomics , Bacteriophages/genetics , Bacteria/genetics
2.
Nat Commun ; 10(1): 4538, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586049

ABSTRACT

Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/drug effects , Antimicrobial Cationic Peptides/therapeutic use , Bacteria/drug effects , Bacteria/genetics , Bacterial Infections/drug therapy , Directed Molecular Evolution , Drug Development/methods , Drug Resistance, Multiple, Bacterial/drug effects , Genome, Bacterial/genetics , Humans , Metagenomics , Microbial Sensitivity Tests , Plasmids/genetics , Point Mutation , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...