Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Anal Chem ; 49(2): 150-159, 2019.
Article in English | MEDLINE | ID: mdl-30285479

ABSTRACT

The complexity of biological objects and the rapid change in their composition after sampling, the variety of compounds of different chemical nature, possessing oxidative and antioxidant properties, make the task of its estimating extremely nontrivial and important for food, nutrients and human health characterization. The paper discusses the use of potentiometry in determining integral antioxidant/oxidant activity mainly of biological fluids and human skin. The source of information is the electrode potential shift that occurs when the analyzed object is inserted in the solution of the mediator system or when the mediator system is exposed to human skin. The experimental approaches, protocols, calculations are described. A number of examples of antioxidant activity and oxidative stress estimation in medicine are presented. The works show lower levels of antioxidant activity (AOA) of plasma and blood serum in patients with cardiovascular diseases, obesity, and malignant neoplasms as compared with the healthy volunteers. It was found out that antioxidant activity of fertile men semen is higher than AOA of infertile patients. Using the method discussed have shown that in some infertile male patients antioxidant activity of semen has been accompanied by oxidant activity. It has been found, that antioxidant activity of skin increases after intake of ascorbic acid and vitamin-enriched juices. The described approach holds considerable promise for monitoring oxidative stress of the whole organism and its systems, and for selecting effective and safe therapy. Thus, it opens up new opportunities in expanding the use of analytical chemistry in such an important field as medicine.


Subject(s)
Antioxidants/metabolism , Medicine , Oxidative Stress , Potentiometry/methods , Disease , Humans
2.
Talanta ; 165: 563-569, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28153299

ABSTRACT

A new sensitive non-invasive gold nanoparticle-based sensor that enables to detect thiols in the human skin has been developed. The detection procedure implied the assessment of the color change of a paper sensor resulting from aggregation of gold nanoparticles caused by thiols. The ratio of the intensity of the photo image blue channel vs the red one (in units of RGB coloration) served as analytical response. The main thiol in the skin is glutathione, therefore, it was used as model biothiol and spiking substance. The range of linearity for glutathione was 8-75µM, the detection limit was 6.9µM. RSD≤7% is for inter-day determination of 10µM glutathione and RSD≤12% is the intra-day value. The recovery of 5µM and 10µM of glutathione was evaluated by applying solution, containing thiol-spikes, on skin. The results varied in the range 77-138%. A hundred-fold excess of serine, alanine, histidine, threonine, creatinine, urea, and ammonia; a ten-fold excess of glycine, proline, leucine, isoleucine, phenylalanine, asparagine; and a five-fold excess of valine, tryptophan, tyrosine, and uric acid, which can be extracted from the skin and is contained in the test matrix, have no significant effect on 10µM glutathione signal. Thiols level in the skin of volunteers (21-65 years old, men and women) detected with the use of a proposed non-invasive sensor was 11.6-47.5µM.


Subject(s)
Biosensing Techniques/methods , Nanoparticles/chemistry , Paper , Skin/metabolism , Sulfhydryl Compounds/analysis , Adult , Aged , Humans , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...