Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010364

ABSTRACT

Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.


Subject(s)
Humans , Biomarkers, Tumor , Diagnosis, Computer-Assisted , Genome , Genomics , Magnetic Resonance Imaging , Neoplasms/therapy , Phenotype , Positron-Emission Tomography , Precision Medicine/methods , Radiology/methods , Radiology, Interventional/methods , Tomography, X-Ray Computed , Workflow
2.
Comput Biol Med ; 62: 86-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25912990

ABSTRACT

Myocardial Infarction (MI) or acute MI (AMI) is one of the leading causes of death worldwide. Precise and timely identification of MI and extent of muscle damage helps in early treatment and reduction in the time taken for further tests. MI diagnosis using 2D echocardiography is prone to inter-/intra-observer variability in the assessment. Therefore, a computerised scheme based on image processing and artificial intelligent techniques can reduce the workload of clinicians and improve the diagnosis accuracy. A Computer-Aided Diagnosis (CAD) of infarcted and normal ultrasound images will be useful for clinicians. In this study, the performance of CAD approach using Discrete Wavelet Transform (DWT), second order statistics calculated from Gray-Level Co-Occurrence Matrix (GLCM) and Higher-Order Spectra (HOS) texture descriptors are compared. The proposed system is validated using 400 MI and 400 normal ultrasound images, obtained from 80 patients with MI and 80 normal subjects. The extracted features are ranked based on t-value and fed to the Support Vector Machine (SVM) classifier to obtain the best performance using minimum number of features. The features extracted from DWT coefficients obtained an accuracy of 99.5%, sensitivity of 99.75% and specificity of 99.25%; GLCM have achieved an accuracy of 85.75%, sensitivity of 90.25% and specificity of 81.25%; and HOS obtained an accuracy of 93.0%, sensitivity of 94.75% and specificity of 91.25%. Among the three techniques presented DWT yielded the highest classification accuracy. Thus, the proposed CAD approach may be used as a complementary tool to assist cardiologists in making a more accurate diagnosis for the presence of MI.


Subject(s)
Diagnosis, Computer-Assisted/methods , Echocardiography, Doppler/methods , Myocardial Infarction/diagnostic imaging , Signal Processing, Computer-Assisted , Support Vector Machine , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...