Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Indian J Microbiol ; 63(3): 344-351, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37781020

ABSTRACT

Over the past two years, the COVID-19 pandemic has seen multiple waves with high morbidity and mortality. Lockdowns and other prompt responses helped India's situation become less severe. Although Malegaon in the Indian state of Maharashtra has a high population density, poor hygienic standards, and oppositional local community views toward national pandemic addressing measures, it is nevertheless reasonably safe. To understand the possible reasons serosurvey was conducted to estimate the anti-SARS-CoV-2 neutralizing antibody levels in the Malegaon population. Also, we did SUTRA mathematical modeling to the Malegaon daily data on COVID-19 attributable events and compared it with the National and state level. The case fatality rate (CFR) in Malegaon city for the first, second, and third waves was 3.25%, 2.25%, and 0.39%, respectively. The crude death rate (CDR) for Maharashtra ranked first for the initial two waves and India for the third wave. Malegaon, meanwhile, finished second in the first two waves but fared best in the third. The Vaccination coverage for the first dose before the second wave was only 0.34% but had risen to 64.46% by 12 Oct 2022. By then, the second and booster dose coverage was 27.55% and 2.38%, respectively. Serosurvey did between 12 and 18 Jan 2022 showed a 93.93% anti-SARS-CoV-2 neutralizing antibody presence. SUTRA modeling elucidated the high levels of antibodies due to the pandemic-reach over 102% by the third wave. The serosurvey and the model explain why the pandemic severity in terms of duration and CFR during the subsequent waves, especially third wave, was milder compared to the first wave in spite of low vaccination rates. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01096-3.

2.
J Med Imaging (Bellingham) ; 9(4): 044502, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35937560

ABSTRACT

Purpose: Vascular changes are observed from initial stages of breast cancer, and monitoring of vessel structures helps in early detection of malignancies. In recent years, thermal imaging is being evaluated as a low-cost imaging modality to visualize and analyze early vascularity. However, visual inspection of thermal vascularity is challenging and subjective. Therefore, there is a need for automated techniques to assist physicians in visualization and interpretation of vascularity by marking the vessel structures and by providing quantified qualitative parameters that helps in malignancy classification Approach: In the literature, there are very few approaches for vascular analysis and classification of breast thermal images using interpretable vascular features. One major challenge is the automated detection of breast vascularity due to diffused vessel boundaries. We first propose a deep learning-based semantic segmentation approach that generates heatmaps of vessel structures from two-dimensional breast thermal images for quantitative assessment of breast vascularity. Second, we extract interpretable vascular parameters and propose a classifier to predict likelihood of breast cancer purely from the extracted vascular parameters. Results: The results of the cancer classifier were validated using an independent clinical dataset consisting of 258 participants. The results were encouraging as the proposed approach segmented vessels well and gave a good classification performance with area under receiver operating characteristic curve of 0.85 with the proposed vascularity parameters. Conclusions: The detected vasculature and its associated high classification performance show the utility of the proposed approach in interpretation of breast vascularity.

3.
Front Artif Intell ; 5: 1050803, 2022.
Article in English | MEDLINE | ID: mdl-36686848

ABSTRACT

Objective: Artificial intelligence-enhanced breast thermography is being evaluated as an ancillary modality in the evaluation of breast disease. The objective of this study was to evaluate the clinical performance of Thermalytix, a CE-marked, AI-based thermal imaging test, with respect to conventional mammography. Methods: A prospective, comparative study performed between 15 December 2018 and 06 January 2020 evaluated the performance of Thermalytix in 459 women with both dense and nondense breast tissue. Both symptomatic and asymptomatic women, aged 30-80 years, presenting to the hospital underwent Thermalytix followed by 2-D mammography and appropriate confirmatory investigations to confirm malignancy. The radiologist interpreting the mammograms and the technician using the Thermalytix tool were blinded to the others' findings. The statistical analysis was performed by a third party. Results: A total of 687 women were recruited, of whom 459 fulfilled the inclusion criteria. Twenty-one malignancies were detected (21/459, 4.6%). The overall sensitivity of Thermalytix was 95.24% (95% CI, 76.18-99.88), and the specificity was 88.58% (95% CI, 85.23-91.41). In women with dense breasts (n = 168, 36.6%), the sensitivity was 100% (95% CI, 69.15-100), and the specificity was 81.65% (95% CI, 74.72-87.35). Among these 168 women, 37 women (22%) were reported as BI-RADS 0 on mammography; in this subset, the sensitivity of Thermalytix was 100% (95% CI, 69.15-100), and the specificity was 77.22% (95% CI, 69.88-83.50). Conclusion: Thermalytix showed acceptable sensitivity and specificity with respect to mammography in the overall patient population. Thermalytix outperformed mammography in women with dense breasts and those reported as BI-RADS 0.

4.
Front Genet ; 11: 753, 2020.
Article in English | MEDLINE | ID: mdl-32793285

ABSTRACT

Today, genomic data holds great potential to improve healthcare strategies across various dimensions - be it disease prevention, enhanced diagnosis, or optimized treatment. The biggest hurdle faced by the medical and research community in India is the lack of genotype-phenotype correlations for Indians at a population-wide and an individual level. This leads to inefficient translation of genomic information during clinical decision making. Population-wide sequencing projects for Indian genomes help overcome hurdles and enable us to unearth and validate the genetic markers for different health conditions. Machine learning algorithms are essential to analyze huge amounts of genotype data in synergy with gene expression, demographic, clinical, and pathological data. Predictive models developed through these algorithms help in classifying the individuals into different risk groups, so that preventive measures and personalized therapies can be designed. They also help in identifying the impact of each genetic marker with the associated condition, from a clinical perspective. In India, genome sequencing technologies have now become more accessible to the general population. However, information on variants associated with several major diseases is not available in publicly-accessible databases. Creating a centralized database of variants facilitates early detection and mitigation of health risks in individuals. In this article, we discuss the challenges faced by genetic researchers and genomic testing facilities in India, in terms of dearth of public databases, people with knowledge on machine learning algorithms, computational resources and awareness in the medical community in interpreting genetic variants. Potential solutions to enhance genomic research in India, are also discussed.

5.
BMC Genomics ; 18(Suppl 3): 233, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28361685

ABSTRACT

BACKGROUND: Metastasis via pelvic and/or para-aortic lymph nodes is a major risk factor for endometrial cancer. Lymph-node resection ameliorates risk but is associated with significant co-morbidities. Incidence in patients with stage I disease is 4-22% but no mechanism exists to accurately predict it. Therefore, national guidelines for primary staging surgery include pelvic and para-aortic lymph node dissection for all patients whose tumor exceeds 2cm in diameter. We sought to identify a robust molecular signature that can accurately classify risk of lymph node metastasis in endometrial cancer patients. 86 tumors matched for age and race, and evenly distributed between lymph node-positive and lymph node-negative cases, were selected as a training cohort. Genomic micro-RNA expression was profiled for each sample to serve as the predictive feature matrix. An independent set of 28 tumor samples was collected and similarly characterized to serve as a test cohort. RESULTS: A feature selection algorithm was designed for applications where the number of samples is far smaller than the number of measured features per sample. A predictive miRNA expression signature was developed using this algorithm, which was then used to predict the metastatic status of the independent test cohort. A weighted classifier, using 18 micro-RNAs, achieved 100% accuracy on the training cohort. When applied to the testing cohort, the classifier correctly predicted 90% of node-positive cases, and 80% of node-negative cases (FDR = 6.25%). CONCLUSION: Results indicate that the evaluation of the quantitative sparse-feature classifier proposed here in clinical trials may lead to significant improvement in the prediction of lymphatic metastases in endometrial cancer patients.


Subject(s)
Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Genomics/methods , Algorithms , Computational Biology/methods , Female , Gene Expression Profiling/methods , Humans , MicroRNAs/genetics , Neoplasm Metastasis , Neoplasm Staging , Prognosis
6.
Article in English | MEDLINE | ID: mdl-27045829

ABSTRACT

Inferring gene regulatory networks (GRNs) from high-throughput gene-expression data is an important and challenging problem in systems biology. Several existing algorithms formulate GRN inference as a regression problem. The available regression based algorithms are based on the assumption that all regulatory interactions are linear. However, nonlinear transcription regulation mechanisms are common in biology. In this work, we propose a new regression based method named bLARS that permits a variety of regulatory interactions from a predefined but otherwise arbitrary family of functions. On three DREAM benchmark datasets, namely gene expression data from E. coli, Yeast, and a synthetic data set, bLARS outperforms state-of-the-art algorithms in the terms of the overall score. On the individual networks, bLARS offers the best performance among currently available similar algorithms, namely algorithms that do not use perturbation information and are not meta-algorithms. Moreover, the presented approach can also be utilized for general feature selection problems in domains other than biology, provided they are of a similar structure.


Subject(s)
Algorithms , Gene Regulatory Networks/genetics , Systems Biology/methods , Cluster Analysis , Databases, Genetic , Escherichia coli/genetics , Gene Expression Profiling , Regression Analysis , Saccharomyces cerevisiae/genetics
7.
Annu Rev Pharmacol Toxicol ; 55: 15-34, 2015.
Article in English | MEDLINE | ID: mdl-25423479

ABSTRACT

This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.


Subject(s)
Antineoplastic Agents/therapeutic use , Artificial Intelligence , Drug Discovery/methods , Pharmacology/methods , Precision Medicine/methods , Algorithms , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Cluster Analysis , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/prevention & control , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Neural Networks, Computer , Patient Safety , Patient Selection , Pattern Recognition, Automated , Risk Assessment , Risk Factors
8.
Genomics Inform ; 11(1): 55-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23613684

ABSTRACT

Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.

SELECTION OF CITATIONS
SEARCH DETAIL
...