ABSTRACT
Currently, petroleum-derived plastics are widely used despite the disadvantage of their long degradation time. Natural polymers, however, can be used as alternatives to overcome this obstacle, particularly cornstarch. The tensile properties of cornstarch films can be improved by adding plant-derived nanofibers. Sisal (Agave sisalana), a very common low-cost species in Brazil, can be used to obtain plant nanofibers. The goal of this study was to obtain sisal nanofibers using low concentrations of sulfuric acid to produce thermoplastic starch nanocomposite films. The films were produced by a casting technique using commercial corn starch, glycerol, and sisal nanofibers, accomplished by acid hydrolysis. The effects of glycerol and sisal nanofiber content on the tensile mechanical properties of the nanocomposites were investigated. Transmission electron microscopy findings demonstrated that the lowest concentration of sulfuric acid produced fibers with nanometric dimensions related to the concentrations used. X-ray diffraction revealed that the untreated fibers and fibers subjected to acid hydrolysis exhibited a crystallinity index of 61.06 and 84.44%, respectively. When the glycerol and nanofiber contents were 28 and 1%, respectively, the tensile stress and elongation were 8.02 MPa and 3.4%. In general, nanocomposites reinforced with sisal nanofibers showed lower tensile stress and higher elongation than matrices without nanofibers did. These results were attributed to the inefficient dispersion of the nanofibers in the polymer matrix. Our findings demonstrate the potential of corn starch nanocomposite films in the packaging industry.
ABSTRACT
The increasing use of petroleum plastics has caused environmental damage due to the degradation time of these materials. An alternative to petroleum plastics could be thermoplastic starch (TPS). However, thermoplastic starch does not exhibit satisfactory tensile properties. The mechanical properties of thermoplastic starch can be improved by adding sisal microfibers. Thus, the objective of this study was to evaluate the influence of different levels of glycerol and sisal microfibers on the thermal and tensile properties of thermoplastic corn starch composites. The microfibers were obtained via mechanical treatment followed by chemical treatment (alkaline treatment and bleaching). The films were obtained by the casting method using commercial corn starch and glycerol as a plasticizing agent, reinforced with sisal microfibers. Fourier transform infrared spectroscopy (FTIR) results revealed that the addition of microfibers did not change the chemical structure of the TPS matrix. The films from the samples with 18% glycerol and 10% microfibers had the highest value for the maximum tension, equal to 4.78 MPa. The thermal decomposition profile of TPS was not altered by the addition of microfibers. Our findings demonstrated the profound influence of glycerol and microfiber contents on the tensile properties of thermoplastic starch composites.