Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1063: 159-166, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-30967180

ABSTRACT

In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42-] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ±â€¯0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 µL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 µg L-1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4-20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%.

2.
Food Chem ; 242: 475-480, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29037717

ABSTRACT

Booster biocides have been widely applied to ships and other submerged structures. These compounds can be released into the marine environment as the result of vessel hull leaching and may remain in different environmental compartments. This study aimed at introducing an environmentally friendly procedure for the extraction of irgarol and diuron from fish samples by vortex-assisted matrix solid phase dispersion (VA-MSPD) with detection by liquid chromatography tandem mass spectrometry. Different types of solid supports and solvents were evaluated. The best results were found when 0.5g mussel shell, 0.5g sodium sulfate and 5mL ethanol were used. Analytical recoveries ranged from 81 to 110%, with RSD below 10%, whereas the matrix effect was between -17 and 1% (for all samples under study). LOQ values of irgarol and diuron were 5 and 50ngg-1, respectively. The method under investigation proved to be a promising alternative to controlling contamination of fish by booster biocides, with low consumption of biodegradable reagents.


Subject(s)
Disinfectants/analysis , Disinfectants/isolation & purification , Seafood/analysis , Solid Phase Extraction/methods , Animals , Bivalvia/chemistry , Chromatography, Liquid , Fishes , Food Contamination/analysis , Solid Phase Extraction/instrumentation , Tandem Mass Spectrometry
3.
J Sep Sci ; 36(20): 3411-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23946243

ABSTRACT

This work reports the development of a dispersive liquid-liquid microextraction method for the simultaneous extraction, preconcentration, and derivatization of Hg(2+) and CH3Hg(+) species from water samples for further determination by GC-MS. Some parameters of the proposed method, such as volume and type of disperser and extraction solvent, and Na[B(C6H5)4] concentration were investigated using response surface methodology. Suitable recoveries were obtained using 80 µL C2 Cl4 (as extraction solvent), 1000 µL ethanol (as disperser solvent), and 300 µL 2.1 mmol/L Na[B(C6H5)4] (as derivatizing agent). Accuracy was evaluated in terms of recovery and ranged from 87 to 99% with RSD values <7%. In addition, a certified reference material of water (NIST 1641d) was analyzed and agreed with the certified value about 107% (for Hg(2+)), with RSD values <8.5%. LODs were 0.3 and 0.2 µg/L, with enrichment factors of 112 and 115 for Hg(2+) and CH3Hg(+), respectively. The optimized method was applied for the determination of Hg(2+) and CH3Hg(+) in tap, well, and lake water samples.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Mercury Compounds/analysis , Mercury Compounds/isolation & purification , Methylmercury Compounds/analysis , Methylmercury Compounds/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Fresh Water/chemistry
4.
Anal Chem ; 85(10): 5015-22, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23614538

ABSTRACT

This paper reports, for the first time, the development of an analytical method employing modified matrix solid-phase dispersion (MSPD) for the extraction of CH3Hg(+) and Hg(2+) species from fish samples. Separation and determination of mercury species were performed by gas chromatography coupled to mass spectrometry (GC/MS). Important MSPD parameters, such as sample mass, type and mass of solid support, concentration of extraction solution (HCl and NaCl), and stirring time, were investigated by the response surface methodology. The derivatization step and the separation of mercury species were also evaluated for the determination by GC/MS. Quantitative recoveries were obtained with 0.2 g of fish sample, 0.5 g of SiO2 as the solid support, 0.5 mol L(-1) NaCl and 4.2 mol L(-1) HCl as the extraction solution, and 1 min stirring time. The MSPD method showed to be suitable for the extraction and determination of mercury species in certified reference materials of dogfish liver (DOLT-3) and dogfish muscle (DORM-2). It had good agreement (about 99%) with the certified values, and the relative standard deviation was lower than 9.5%. The limits of detection were 0.06 and 0.12 µg g(-1), for CH3Hg(+) and Hg(2+), respectively. A matrix effect was observed, and the quantification was carried out by the matrix-matched calibration. The method was applied to tuna fish ( Thunnus thynnus ), angel shark ( Squatina squatina ), and guitarfish ( Rhinobatos percellens ) samples. The results of the mercury speciation by MPSD and GC/MS were compared to the total mercury concentration determined by flow injection cold vapor generation inductively coupled plasma mass spectrometry, after microwave-assisted digestion. Agreement ranged from 102% to 105%.


Subject(s)
Analytic Sample Preparation Methods/methods , Fishes , Mercury/analysis , Mercury/isolation & purification , Methylmercury Compounds/analysis , Methylmercury Compounds/isolation & purification , Solid Phase Extraction/methods , Animals , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry , Limit of Detection
5.
Bioresour Technol ; 110: 730-4, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22349195

ABSTRACT

This work reports, for the first time, the determination of major and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sn, Sr, Ti, Tl, U, V, and Zn) in the fractions of the synthesis of fatty acid methyl esters (FAMEs). These include fresh microalgae, residual biomass, lipid fraction, crude FAMEs, insoluble fraction and purified FAMEs from microalgae Chlorella sp. A microwave-assisted digestion procedure in closed vessels was applied for sample digestion and subsequent element determination by inductively coupled plasma-based techniques. The proposed method was suitable for the multielement determination in FAMEs and its fractions obtained from microalgae. The element concentration was compared with results found in the literature and a careful discussion about the use of residual biomass for different applications was performed.


Subject(s)
Chlorella/metabolism , Fatty Acids/metabolism , Trace Elements/metabolism , Esterification
SELECTION OF CITATIONS
SEARCH DETAIL
...