Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Microbiol Spectr ; 11(6): e0197823, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37831469

ABSTRACT

IMPORTANCE: Agaricus bisporus is an economically important edible mushroom and manipulating its developmental patterns is crucial for maximizing yield and quality. One of the potential strategies for achieving such a goal is passaging microbial communities in compost or casing. The current study demonstrated that passaging substrates develop enriched microbial communities, and after a few passages, certain levels of changes in mushroom developmental patterns (the timing of fruiting bodies formation) were observed as well as shifts in the bacterial communities. Overall, a better understanding of the complex interactions between microorganisms present in the cultivation system may help farmers and researchers to develop more efficient and sustainable cultivation practices that can both benefit the environment and human health.


Subject(s)
Agaricus , Composting , Microbiota , Humans , Bacteria , Soil
2.
Biomimetics (Basel) ; 8(2)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37366852

ABSTRACT

The construction industry makes a significant contribution to global CO2 emissions. Material extraction, processing, and demolition account for most of its environmental impact. As a response, there is an increasing interest in developing and implementing innovative biomaterials that support a circular economy, such as mycelium-based composites. The mycelium is the network of hyphae of fungi. Mycelium-based composites are renewable and biodegradable biomaterials obtained by ceasing mycelial growth on organic substrates, including agricultural waste. Cultivating mycelium-based composites within molds, however, is often wasteful, especially if molds are not reusable or recyclable. Shaping mycelium-based composites using 3D printing can minimize mold waste while allowing intricate forms to be fabricated. In this research, we explore the use of waste cardboard as a substrate for cultivating mycelium-based composites and the development of extrudable mixtures and workflows for 3D-printing mycelium-based components. In this paper, existing research on the use of mycelium-based material in recent 3D printing efforts was reviewed. This review is followed by the MycoPrint experiments that we conducted, and we focus on the main challenges that we faced (i.e., contamination) and the ways in which we addressed them. The results of this research demonstrate the feasibility of using waste cardboard as a substrate for cultivating mycelia and the potential for developing extrudable mixtures and workflows for 3D-printing mycelium-based components.

3.
Microb Ecol ; 84(1): 20-32, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34383127

ABSTRACT

Different from other fungal species that can be largely cultivated in 'axenic conditions' using plant material (e.g., species of Lentinula and Pleurotus in 'sterile' straw-based substrate), the commercial Agaricus bisporus cultivation system relies heavily on ecological relationships with a broad range of microorganisms present in the system (compost and casing). Since the A. bisporus cultivation system consists of a microbial manipulation process, it is important to know the microbial community dynamics during the entire cultivation cycle to design further studies and/or crop management strategies to optimize this system. To capture the bacterial community 'flow' from compost raw materials to the casing to the formation and maturation of mushroom caps, community snapshots were generated by direct DNA recovery (amplicon sequencing). The 'bacterial community flow' revealed that compost, casing and mushrooms represent different niches for bacteria present in the cultivation system, but at the same time, a bacterial exchange between microenvironments can occur for a portion of the community. Within each microenvironment, compost showed intense bacterial populational dynamics, probably due to the environmental changes imposed by composting conditions. In casing, the colonization of A. bisporus appeared, to reshape the native bacterial community which later, with some other members present in compost, becomes the core community in mushroom caps. The current bacterial survey along with previous results provides more cues of specific bacteria groups that can be in association with A. bisporus development and health.


Subject(s)
Agaricus , Composting , Microbiota , Agaricus/genetics , Bacteria/genetics
4.
Plant Dis ; 103(11): 2714-2732, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31560599

ABSTRACT

Among the biotic constraints of common mushroom (Agaricus bisporus) production, bacterial blotch is considered the most important mushroom disease in terms of global prevalence and economic impact. Etiology and management of bacterial blotch has been a major concern since its original description in 1915. Although Pseudomonas tolaasii is thought to be the main causal agent, various Pseudomonas species, as well as organisms from other genera have been reported to cause blotch symptoms on mushroom caps. In this review, we provide an updated overview on the etiology, epidemiology, and management strategies of bacterial blotch disease. First, diversity of the causal agent(s) and utility of high throughput sequencing-based approaches in the precise characterization and identification of blotch pathogen(s) is explained. Further, due to the limited options for use of conventional pesticides in mushroom farms against blotch pathogen(s), we highlight the role of balanced threshold of relative humidity and temperature in mushroom farms to combat the disease in organic and conventional production. Additionally, we discuss the possibility of the use of biological control agents (either antagonistic mushroom-associated bacterial strains or bacteriophages) for blotch management as one of the sustainable approaches for 21st century agriculture. Finally, we aim to elucidate the association of mushroom microbiome in cap development and productivity on one hand, and blotch incidence/outbreaks on the other hand.


Subject(s)
Agaricus , Food Microbiology , Pseudomonas , Food Microbiology/trends
5.
Microb Ecol ; 75(2): 318-330, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28730353

ABSTRACT

Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.


Subject(s)
Agaricus/growth & development , Bacteria/isolation & purification , Culture Media/chemistry , Pasteurization/methods , Soil/chemistry , Agaricus/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Biodiversity , Composting , Culture Media/metabolism , DNA, Bacterial/genetics , Hot Temperature , Pasteurization/instrumentation , RNA, Ribosomal, 16S/genetics , Soil Microbiology
6.
World J Microbiol Biotechnol ; 32(11): 190, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27696289

ABSTRACT

In recent years, oyster mushroom (Pleurotus ostreatus) has become one of the most cultivated mushrooms in the world, mainly in Brazil. Among many factors involved in a mushroom production, substrate preparation is the most critical step, which can be influenced by composting management techniques. Looking forward to optimizing the substrate preparation process, were tested different composting conditions (7 and 14 days of composting with or without conditioning), potential raw materials (decumbens grass, brizantha grass and sugarcane straw) and nitrogen supplementation (with or without wheat bran) on oyster mushroom yield and biological efficiency (BE). The substrate composted for 7 days with conditioning showed higher yield and biological efficiency of mushroom (24.04 and 100.54 %, respectively). Substrates without conditioning (7 and 14 days of composting) showed smaller mushroom yield and biological efficiency. Among the raw materials tested, brizantha grass showed higher mushroom yield followed by decumbens grass, sugarcane straw and wheat straw (28.5, 24.32, 23.5 and 19.27 %, respectively). Brizantha grass also showed higher biological efficiency followed by sugarcane straw, decumbens grass and wheat straw (123.95, 103.70, 96.90 and 86.44 %, respectively). Supplementation with wheat bran improved yield and biological efficiency in all substrate formulations tested; thus, oyster mushroom yield and biological efficiency were influenced by substrate formulation (raw materials), supplementation and composting conditions.


Subject(s)
Agriculture/methods , Pleurotus/growth & development , Brazil , Culture Media , Host Specificity , Poaceae/chemistry , Saccharum/chemistry , Soil Microbiology , Triticum/chemistry
7.
Braz. j. microbiol ; 44(4): 1139-1146, Oct.-Dec. 2013. graf, tab
Article in English | LILACS | ID: lil-705258

ABSTRACT

Two compost formulations based on oat straw (Avena sativa) and brachiaria (Brachiaria sp.) were tested for the cultivation of three Agaricus bisporus strains (ABI-07/06, ABI-05/03, and PB-1). The experimental design was a 2 x 3 factorial scheme (composts x strains) with 6 treatments and 8 repetitions (boxes containing 12 kg of compost). The chemical characterization of the compost (humidity, organic matter, carbon, nitrogen, pH, raw protein, ethereal extract, fibers, ash, cellulose, hemicellulose, and lignin) before and after the cultivation of A. bisporus and the production (basidiomata mass, productivity, and biological efficiency) were evaluated. Data were submitted to variance analysis, and averages were compared by means of the Tukey's test. According to the results obtained, the chemical and production characteristics showed that the best performances for the cultivation of A. bisporus were presented by the compost based on oat and the strain ABI-07/06.


Subject(s)
Agaricus/growth & development , Soil Microbiology , Soil/chemistry , Avena , Brachiaria
8.
Braz J Microbiol ; 44(4): 1139-46, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24688503

ABSTRACT

Two compost formulations based on oat straw (Avena sativa) and brachiaria (Brachiaria sp.) were tested for the cultivation of three Agaricus bisporus strains (ABI-07/06, ABI-05/03, and PB-1). The experimental design was a 2 × 3 factorial scheme (composts × strains) with 6 treatments and 8 repetitions (boxes containing 12 kg of compost). The chemical characterization of the compost (humidity, organic matter, carbon, nitrogen, pH, raw protein, ethereal extract, fibers, ash, cellulose, hemicellulose, and lignin) before and after the cultivation of A. bisporus and the production (basidiomata mass, productivity, and biological efficiency) were evaluated. Data were submitted to variance analysis, and averages were compared by means of the Tukey's test. According to the results obtained, the chemical and production characteristics showed that the best performances for the cultivation of A. bisporus were presented by the compost based on oat and the strain ABI-07/06.


Subject(s)
Agaricus/growth & development , Soil Microbiology , Soil/chemistry , Avena , Brachiaria
SELECTION OF CITATIONS
SEARCH DETAIL
...