Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Purinergic Signal ; 14(2): 201-211, 2018 06.
Article in English | MEDLINE | ID: mdl-29680937

ABSTRACT

Leishmania amazonensis is the etiologic agent of cutaneous leishmaniasis, an immune-driven disease causing a range of clinical symptoms. Infections caused by L. amazonensis suppress the activation and function of immune cells, including macrophages, dendritic cells, and CD4+ T cells. In this study, we analyzed the course of infection as well as the leishmanicidal effect of intralesional UTP treatment in L. amazonensis-infected BALB/c mice. We found that UTP treatment reduced the parasitic load in both footpad and lymph node sites of infection. UTP also boosted Th1 immune responses, increasing CD4+ T cell recruitment and production of IFN-γ, IL-1ß, IL-12, and TNF-α. In addition, the role of UTP during innate immune response against L. amazonensis was evaluated using the air pouch model. We observed that UTP augmented neutrophil chemoattraction and activated microbicidal mechanisms, including ROS production. In conclusion, our data suggested an important role for this physiological nucleotide in controlling L. amazonensis infection, and its possible use as a therapeutic agent for shifting immune responses to Th1 and increasing host resistance against L. amazonensis infection.


Subject(s)
Leishmaniasis, Cutaneous/immunology , Reactive Oxygen Species , Th1 Cells/drug effects , Uridine Triphosphate/pharmacology , Animals , Female , Leishmania mexicana , Mice , Mice, Inbred BALB C , Th1 Cells/immunology
2.
PLoS One ; 9(10): e110185, 2014.
Article in English | MEDLINE | ID: mdl-25310682

ABSTRACT

Silicosis is an occupational lung disease, characterized by irreversible and progressive fibrosis. Silica exposure leads to intense lung inflammation, reactive oxygen production, and extracellular ATP (eATP) release by macrophages. The P2X7 purinergic receptor is thought to be an important immunomodulator that responds to eATP in sites of inflammation and tissue damage. The present study investigates the role of P2X7 receptor in a murine model of silicosis. To that end wild-type (C57BL/6) and P2X7 receptor knockout mice received intratracheal injection of saline or silica particles. After 14 days, changes in lung mechanics were determined by the end-inflation occlusion method. Bronchoalveolar lavage and flow cytometry analyzes were performed. Lungs were harvested for histological and immunochemistry analysis of fibers content, inflammatory infiltration, apoptosis, as well as cytokine and oxidative stress expression. Silica particle effects on lung alveolar macrophages and fibroblasts were also evaluated in cell line cultures. Phagocytosis assay was performed in peritoneal macrophages. Silica exposure increased lung mechanical parameters in wild-type but not in P2X7 knockout mice. Inflammatory cell infiltration and collagen deposition in lung parenchyma, apoptosis, TGF-ß and NF-κB activation, as well as nitric oxide, reactive oxygen species (ROS) and IL-1ß secretion were higher in wild-type than knockout silica-exposed mice. In vitro studies suggested that P2X7 receptor participates in silica particle phagocytosis, IL-1ß secretion, as well as reactive oxygen species and nitric oxide production. In conclusion, our data showed a significant role for P2X7 receptor in silica-induced lung changes, modulating lung inflammatory, fibrotic, and functional changes.


Subject(s)
Inflammation/metabolism , Inflammation/pathology , Lung/metabolism , Lung/physiopathology , Silicon Dioxide/toxicity , Animals , Apoptosis , Bronchoalveolar Lavage Fluid , Collagen/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Immunophenotyping , Interleukin-1beta/metabolism , Lung/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , NIH 3T3 Cells , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phagocytosis/drug effects , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology , Purinergic P2X Receptor Antagonists/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Purinergic P2X7/metabolism , Rosaniline Dyes/metabolism , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...