Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Curr Med Res Opin ; : 1-11, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38727420

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disease in which blood cells lack anchored proteins that regulate the complement system. The erythrocytes are then destroyed because of uncontrolled complement activity, leading to intravascular hemolysis (IVH) and a high risk of thrombosis outcome. A huge alteration in the treatment of the disease was the development of terminal complement inhibitors, with the achievement of IVH blockade, reduction or abolishment of red blood cell (RBC) transfusions, and thromboembolic events prevention. However, patients treated with these inhibitors can still present extravascular hemolysis (EVH) caused by C3 activation and residual IVH or clinically relevant levels of breakthrough hemolysis (BTH). Proximal complement inhibitors turned out to be the key to the solution of this problem by targeting components of the proximal complement pathway, avoiding intra and extravascular hemolysis. FDA approved eculizumab, ravulizumab (terminal inhibitors), pegcetacoplan, iptacopan, and danicopan (proximal inhibitors) as a treatment for PNH so far. Various clinical trials are underway to find the most effective method to treat patients with PNH. This review aimed to summarize 71 registered clinical trials in the ClinicalTrials.gov database with the various treatment drugs, possible mechanisms, and novel findings related to PNH treatment.

2.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727306

ABSTRACT

Parkinson's disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain-gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/microbiology , Parkinson Disease/therapy , Brain/microbiology , Brain/pathology , Brain-Gut Axis/physiology , Animals
3.
Biochem Biophys Res Commun ; 717: 150057, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718568

ABSTRACT

Leptospirosis is a widespread zoonotic infectious disease of human and veterinary concern caused by pathogenic spirochetes of the genus Leptospira. To date, little progress towards understanding leptospiral pathogenesis and identification of virulence factors has been made, which is the main bottleneck for developing effective measures against the disease. Some leptospiral proteins, including LipL32, Lig proteins, LipL45, and LipL21, are being considered as potential virulence factors or vaccine candidates. However, their function remains to be established. LipL45 is the most expressed membrane lipoprotein in leptospires, upregulated when the bacteria are transferred to temperatures resembling the host, expressed during infection, suppressed after culture attenuation, and known to suffer processing in vivo and in vitro, generating fragments. Based on body of evidence, we hypothesized that the LipL45 processing might occur by an auto-cleavage event, deriving two fragments. The results presented here, based on bioinformatics, structure modeling analysis, and experimental data, corroborate that LipL45 processing probably includes a self-catalyzed non-proteolytic event and suggest the participation of LipL45 in cell-surface signaling pathways, as the protein shares structural similarities with bacterial sigma regulators. Our data indicate that LipL45 might play an important role in response to environmental conditions, with possible function in the adaptation to the host.


Subject(s)
Leptospira , Lipoproteins , Lipoproteins/metabolism , Lipoproteins/chemistry , Lipoproteins/genetics , Leptospira/metabolism , Leptospira/chemistry , Sigma Factor/metabolism , Sigma Factor/chemistry , Sigma Factor/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Models, Molecular , Leptospirosis/metabolism , Leptospirosis/microbiology
4.
J Biomol Struct Dyn ; : 1-10, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529903

ABSTRACT

Complement C5 is the target of the monoclonal antibody eculizumab, used in complement dysregulating disorders, like the rare disease Paroxysmal Nocturnal Hemoglobinuria (PNH). PNH is an acquired hematopoietic stem cell condition characterized by aberrant destruction of erythrocytes, chronic hemolytic anemia, and thromboembolism propensity. C5 is a protein component of the complement system which is part of the immune system of the body and plays a prominent role in the destruction of red blood cells, misidentifying them as a threat. This work describes the application of molecular dynamics simulations to the study of the underlying interactions between complement C5 and eculizumab. This study also reveals the importance of single nucleotide polymorphisms on C5 protein concerning the effective inhibition of the mAB, involving the mechanistic events taking place at the interface spots of the complex. The predicted conformational change in the C5 Arg885/His/Cys mutation has implications on the protein's interaction with eculizumab, compromising their compatibility. The acquired insights into the conformational changes, dynamics, flexibility, and interactions shed light on the knowledge of the function of this biomolecule providing answers about the poor response to the treatment in PNH patient carriers of the mutations. By investigating the intricate dynamics, significant connections between C5 and eculizumab can be uncovered. Such insights may aid in the creation of novel compounds or lead to the enhancement of eculizumab's efficacy.Communicated by Ramaswamy H. Sarma.

5.
J Proteomics ; 297: 105125, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38364905

ABSTRACT

Leptospira is a genus of bacteria that includes free-living saprophytic species found in water or soil, and pathogenic species, which are the etiologic agents of leptospirosis. Besides all the efforts, there are only a few proteins described as virulence factors in the pathogenic strain L. interrogans. This work aims to perform L. biflexa serovar Patoc1 strain Paris global proteome and to compare with the proteome database of pathogenic L. interrogans serovar Copenhageni strain Fiocruz L1-130. We identified a total of 2327 expressed proteins of L. biflexa by mass spectrometry. Using the Get Homologues software with the global proteome of L. biflexa and L. interrogans, we found orthologous proteins classified into conserved, low conserved, and specific proteins. Comparative bioinformatic analyses were performed to understand the biological functions of the proteins, subcellular localization, the presence of signal peptide, structural domains, and motifs using public softwares. These results lead to the selection of 182 low conserved within the saprophyte, and 176 specific proteins of L. interrogans. It is anticipated that these findings will indicate further studies to uncover virulence factors in the pathogenic strain. This work presents for the first time the global proteome of saprophytic strain L. biflexa serovar Patoc, strain Patoc1. SIGNIFICANCE: The comparative analysis established an array of specific proteins in pathogenic strain that will narrow down the identification of immune protective proteins that will help fight leptospirosis.


Subject(s)
Leptospira interrogans , Leptospira , Leptospirosis , Humans , Proteome/metabolism , Virulence Factors/metabolism
6.
J Proteomics, v. 297, 105125, abr. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5273

ABSTRACT

Leptospira is a genus of bacteria that includes free-living saprophytic species found in water or soil, and pathogenic species, which are the etiologic agents of leptospirosis. Besides all the efforts, there are only a few proteins described as virulence factors in the pathogenic strain L. interrogans. This work aims to perform L. biflexa serovar Patoc1 strain Paris global proteome and to compare with the proteome database of pathogenic L. interrogans serovar Copenhageni strain Fiocruz L1–130. We identified a total of 2327 expressed proteins of L. biflexa by mass spectrometry. Using the Get Homologues software with the global proteome of L. biflexa and L. interrogans, we found orthologous proteins classified into conserved, low conserved, and specific proteins. Comparative bioinformatic analyses were performed to understand the biological functions of the proteins, subcellular localization, the presence of signal peptide, structural domains, and motifs using public softwares. These results lead to the selection of 182 low conserved within the saprophyte, and 176 specific proteins of L. interrogans. It is anticipated that these findings will indicate further studies to uncover virulence factors in the pathogenic strain. This work presents for the first time the global proteome of saprophytic strain L. biflexa serovar Patoc, strain Patoc1.

7.
Biomolecules ; 13(10)2023 09 25.
Article in English | MEDLINE | ID: mdl-37892126

ABSTRACT

Neurodegenerative diseases (NDs) are characterized by progressive and irreversible neuronal loss, accompanied by a range of pathological pathways, including aberrant protein aggregation, altered energy metabolism, excitotoxicity, inflammation, and oxidative stress. Some of the most common NDs include Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and Huntington's Disease (HD). There are currently no available cures; there are only therapeutic approaches that ameliorate the progression of symptoms, which makes the search for new drugs and therapeutic targets a constant battle. Cyanobacteria are ancient prokaryotic oxygenic phototrophs whose long evolutionary history has resulted in the production of a plethora of biomedically relevant compounds with anti-inflammatory, antioxidant, immunomodulatory, and neuroprotective properties, that can be valuable in this field. This review summarizes the major NDs and their pathophysiology, with a focus on the anti-neurodegenerative properties of cyanobacterial compounds and their main effects.


Subject(s)
Cyanobacteria , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/metabolism , Oxidative Stress , Parkinson Disease/drug therapy , Antioxidants/pharmacology , Cyanobacteria/metabolism
8.
Molecules ; 28(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513486

ABSTRACT

Alzheimer's disease (AD) is well-known among neurodegenerative diseases for the decline of cognitive functions, making overall daily tasks difficult or impossible. The disease prevails as the most common form of dementia and remains without a well-defined etiology. Being considered a disease of multifactorial origin, current targeted treatments have only managed to reduce or control symptoms, and to date, only two drugs are close to being able to halt its progression. For decades, natural compounds produced by living organisms have been at the forefront of research for new therapies. Mushrooms, which are well-known for their nutritional and medicinal properties, have also been studied for their potential use in the treatment of AD. Natural products derived from mushrooms have shown to be beneficial in several AD-related mechanisms, including the inhibition of acetylcholinesterase (AChE) and ß-secretase (BACE 1); the prevention of amyloid beta (Aß) aggregation and neurotoxicity; and the prevention of Tau expression and aggregation, as well as antioxidant and anti-inflammatory potential. Several studies in the literature relate mushrooms to neurodegenerative diseases. However, to the best of our knowledge, there is no publication that summarizes only AD data. In this context, this review aims to link the therapeutic potential of mushrooms to AD by compiling the anti-AD potential of different mushroom extracts or isolated compounds, targeting known AD-related mechanisms.


Subject(s)
Agaricales , Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Agaricales/metabolism , Acetylcholinesterase/metabolism
9.
Antibiotics (Basel) ; 12(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36830193

ABSTRACT

Aliarcobacter butzleri (A. butzleri) is an emergent zoonotic food-related pathogen that can be transmitted through the consumption of poultry meat. Data regarding the pathogenicity and resistance of A. butzleri are still scarce, and the presence of virulent MDR strains of this zoonotic pathogen in poultry meat is an issue of particular concern to public health. This study aimed to characterize the pathogenicity and antimicrobial resistance profiles of A. butzleri strains isolated from poultry meat sold at retail markets in São Paulo, Brazil. The minimum inhibitory concentrations of 27 strains were determined using the broth microdilution method. The results showed that 77.7% of the isolates were resistant to clindamycin, 62.9% to florfenicol, 59.2% to nalidixic acid, 11.1% to azithromycin, 7.4% to ciprofloxacin and telithromycin, and 3.7% to erythromycin and tetracycline, although all were susceptible to gentamicin. Moreover, 55.5% of the virulent isolates were also multidrug-resistant (MDR). Three strains were selected for pathogenicity tests in vitro and in vivo. The tested strains expressed weak/moderate biofilm production and showed a diffuse adhesion pattern (3 h) in HeLa cells and toxicity in Vero cells (24 h). Experimental inoculation in 11-week-old chicks induced a transitory inflammatory enteritis. Intestinal hemorrhage and destruction of the intestinal crypts were observed in the rabbit ileal loop test. Considering the fact that Brazil is a major exporter of poultry meat, the data from this study point to the need of improvement of the diagnostic tools, as well as of the adoption of surveillance guidelines and more specific control strategies to ensure food safety, reducing the presence of pathogenic MDR strains in broilers.

10.
Am J Addict ; 32(3): 274-282, 2023 05.
Article in English | MEDLINE | ID: mdl-36571570

ABSTRACT

BACKGROUND AND OBJECTIVES: Hazardous substance use is a major public health concern among individuals with a history of sexual victimization. Although increased religiosity has been known to serve as a protective factor against hazardous substance use, religious individuals with a history of sexual victimization may be at a greater risk for hazardous substance use due to difficulties reconciling sexual victimization with their religious beliefs. Individuals with greater trauma-related shame may engage in hazardous substance use as a means of coping with the traumatic event. METHOD: The present study consisted of 614 participants (Mage = 34.57, 50% women). RESULTS: Results suggested that organizational, nonorganizational, and intrinsic religiosity were positively associated with hazardous alcohol use at higher, but not lower, levels of trauma-related shame. Organizational and intrinsic religiosity were positively associated with hazardous drug use at higher, but not lower, levels of trauma-related shame. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE: This is the first study to examine the role of trauma-related shame in the relationship between religiosity and hazardous substance use. The findings underline the importance of targeting trauma-related shame in religious individuals with a history of sexual victimization.


Subject(s)
Religion , Sexual Behavior , Humans , Female , Adult , Male , Adaptation, Psychological , Shame , Hazardous Substances
11.
Pathogens ; 11(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36558862

ABSTRACT

Extra-intestinal pathogenic Escherichia coli (ExPEC) may inhabit the human gut microbiota without causing disease. However, if they reach extra-intestinal sites, common cystitis to bloodstream infections may occur, putting patients at risk. To examine the human gut as a source of endogenous infections, we evaluated the E. coli clonal diversity of 18 inpatients' guts and their relationship with strains isolated from urinary tract infection (UTI) in the same hospital. Random amplified polymorphic DNA evaluated the clonal diversity, and the antimicrobial susceptibility was determined by disk diffusion. One isolate of each clone detected was sequenced, and their virulome and resistome were determined. Overall, 177 isolates were screened, among which 32 clones were identified (mean of two clones per patient), with ExPEC strains found in over 75% of the inpatients' guts. Endogenous infection was confirmed in 75% of the cases. ST10, ST59, ST69, ST131, and ST1193 clones and critical mobile drug-resistance encoding genes (blaCTX-M-15, blaOXA-1, blaDHA-1, aac(6')-lb-cr, mcr-1.26, qnrB4, and qnrB19) were identified in the gut of inpatients. The genomic analysis highlighted the diversity of the fecal strains, colonization by lactose-negative E. coli, the high frequency of ExPEC in the gut of inpatients without infections, and the presence of ß-lactamase producing E. coli in the gut of inpatients regardless of the previous antibiotics' usage. Considering that we found more than one ExPEC clone in the gut of several inpatients, surveillance of inpatients' fecal pathogens may prevent UTI caused by E. coli in the hospital and dissemination of risk clones.

12.
FEMS Microbiol Lett ; 369(1)2022 10 28.
Article in English | MEDLINE | ID: mdl-36208930

ABSTRACT

Despite the many challenges faced by the sudden adaptation of the teaching-learning processes during the emergency remote teaching (ERT) imposed by the COVID-19 pandemic, this period allowed the exploration of innovative educational methods. Here, we report the description and evaluation of a didactic activity designed to foster an active learning environment among Veterinary Medicine undergraduate students enrolling in Microbiology classes during the ERT period at the University of Minas Gerais. The activity consisted of initial expositive classes, followed by students' active search for information, and the execution of a report and short comics covering the topic. The activity was evaluated by a voluntary postquestionnaire. The results suggest that the students had good emotional and educational perception toward the task, and that they noticed the elaboration of the comics as the most valuable tool aiding in the retention of microbiological concepts. We conclude that the proposed strategy, specially by the incorporation of the comics, helped the meaningful learning of microbiology.


Subject(s)
COVID-19 , Pandemics , Humans , Students , Problem-Based Learning
13.
Mar Drugs ; 20(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35736165

ABSTRACT

Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer's disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Seaweed , Alzheimer Disease/drug therapy , Biological Availability , Digestion , Humans , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
14.
Foods ; 11(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35267379

ABSTRACT

Neuroprotection is a need that remains unmet in treating chronic neurodegenerative disorders, despite decades of extensive research. To find new neuroprotective compounds, extracts of Himanthalia elongata (L.) S.F.Gray and of Eisenia bicyclis (Kjellman) Setchell were obtained through subcritical water extraction applying a four-step temperature gradient. The fractions obtained were screened against brain enzymes involved in neurodegenerative etiology, namely in Alzheimer's and Parkinson's diseases, and against reactive oxygen and nitrogen species, all contributing factors to the progression of neurodegeneration. Results showed no significant enzyme inhibition but strong radical scavenging activities, particularly in the fourth fraction, extracted at the highest temperature (250 °C), highlighting their ability to retard oxidative and nitrosative stresses. At higher temperatures, fractions were composed of phenolic compounds and Maillard reaction products, a combination that contributed to their antioxidant activity and, consequently, their neuroprotective properties. All fractions were evaluated for the presence of iodine, 14 organochlorine and 7 organophosphorus pesticides, and pharmaceuticals used in Alzheimer's and Parkinson's diseases (14), psychiatric drugs (8), and metabolites (8). The fractions studied did not present any of the screened contaminants, and only fraction 1 of E. bicyclis should be used with caution due to iodine content.

15.
Microorganisms ; 10(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35208757

ABSTRACT

Urinary tract infections (UTI) affect community and healthcare patients worldwide and may have different clinical outcomes. We assessed the phylogenetic origin, the presence of 43 virulence factors (VFs) of diarrheagenic and extraintestinal pathogenic Escherichia coli, and the occurrence of hybrid strains among E. coli isolates from 172 outpatients with different types of UTI. Isolates from phylogroup B2 (46%) prevailed, followed by phylogroups A (15.7%) and B1 (12.2%), with similar phylogenetic distribution in symptomatic and asymptomatic patients. The most frequent VFs according to their functional category were fimA (94.8%), ompA (83.1%), ompT (63.3%), chuA (57.6%), and vat (22%). Using published molecular criteria, 34.3% and 18.0% of the isolates showed intrinsic virulence and uropathogenic potential, respectively. Two strains carried the eae and escV genes and one the aggR gene, which classified them as hybrid strains. These hybrid strains interacted with renal and bladder cells, reinforcing their uropathogenic potential. The frequency of UPEC strains bearing a more pathogenic potential in the outpatients studied was smaller than reported in other regions. Our data contribute to deepening current knowledge about the mechanisms involved in UTI pathogenesis, especially among hybrid UPEC strains, as these could colonize the host's intestine, leading to intestinal infections followed by UTI.

16.
Porto Biomed J ; 7(6): e188, 2022.
Article in English | MEDLINE | ID: mdl-37152083

ABSTRACT

Currently available urinalysis methods are often applied for screening and monitoring of several pathologies. However, traditionally analyzed biomarkers in urinalysis still lack sensitivity and specificity to accurately diagnose some diseases. Several studies have proposed the use of electronic noses (eNoses) for the analysis of volatile organic compounds in urine samples that may, directly or indirectly, correlate with certain pathologies. Hence, the aim of this study was to perform a systematic review and meta-analysis of studies concerning the use of portable electronic noses for diagnosis or monitoring of pathologies through analysis of urine samples. A systematic review of the literature was held according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twenty-four articles met the inclusion criteria and were included in the analysis. The results of the revised studies showed that there are various volatile organic compound profiles, identified through eNose analysis, that may be applied for diagnosis or monitoring of several diseases, such as diabetes, urinary tract infection, inflammatory bowel disease, and kidney disease. A meta-analysis was conducted taking into consideration the data of 10 of the initial 24 articles. The pooled sensitivity, specificity, and diagnostic odds ratio were 84% (95% CI, 0.72-0.92), 85% (95% CI, 0.75-0.91), and 24.17 (95% CI: 7.85-74.41), respectively. The area under the receiver operating characteristic curve was 0.897. These results suggest that eNose technology has adequate diagnostic accuracy for several pathologies and could be a promising screening tool for clinical settings. However, more studies are needed to reduce heterogeneity between results.

17.
Mar Drugs ; 19(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208482

ABSTRACT

Neurodegenerative diseases (NDs) represent a drawback in society given the ageing population. Dementias are the most prevalent NDs, with Alzheimer's disease (AD) representing around 70% of all cases. The current pharmaceuticals for AD are symptomatic and with no effects on the progression of the disease. Thus, research on molecules with therapeutic relevance has become a major focus for the scientific community. Cyanobacteria are a group of photosynthetic prokaryotes rich in biomolecules with confirmed activity in pathologies such as cancer, and with feasible potential in NDs such as AD. In this review, we aimed to compile the research works focused in the anti-AD potential of cyanobacteria, namely regarding the inhibition of the enzyme ß-secretase (BACE1) as a fundamental enzyme in the generation of ß-amyloid (Aß), the inhibition of the enzyme acetylcholinesterase (AChE) lead to an increase in the availability of the neurotransmitter acetylcholine in the synaptic cleft and the antioxidant and anti-inflammatory effects, as phenomena associated with neurodegeneration mechanisms.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Biological Products/therapeutic use , Cyanobacteria/chemistry , Neuroprotective Agents/therapeutic use , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Alzheimer Disease/prevention & control , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Biomarkers/metabolism , Drug Discovery , Humans , Mice , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Rats
18.
Front Cell Infect Microbiol ; 11: 708739, 2021.
Article in English | MEDLINE | ID: mdl-34277477

ABSTRACT

Leptospirosis is a neglected zoonosis, caused by pathogenic spirochetes bacteria of the genus Leptospira. The molecular mechanisms of leptospirosis infection are complex, and it is becoming clear that leptospires express several functionally redundant proteins to invade, disseminate, and escape the host's immune response. Here, we describe a novel leptospiral protein encoded by the gene LIC13086 as an outer membrane protein. The recombinant protein LIC13086 can interact with the extracellular matrix component laminin and bind plasminogen, thus possibly participating during the adhesion process and dissemination. Also, by interacting with fibrinogen and plasma fibronectin, the protein LIC13086 probably has an inhibitory effect in the fibrin clot formation during the infection process. The newly characterized protein can also bind molecules of the complement system and the regulator C4BP and, thus, might have a role in the evasion mechanism of Leptospira. Taken together, our results suggest that the protein LIC13086 may have a multifunctional role in leptospiral pathogenesis, participating in host invasion, dissemination, and immune evasion processes.


Subject(s)
Leptospira interrogans , Leptospira , Leptospirosis , Fibrin/metabolism , Humans , Leptospira interrogans/genetics , Leptospira interrogans/metabolism , Plasminogen/metabolism , Protein Binding
20.
J Affect Disord ; 279: 106-110, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33045551

ABSTRACT

BACKGROUND: DNA oxidative damage is a marker of increased oxidative stress activity. Elevated DNA oxidative damage has been associated with major depressive disorder in young adults, but there is no information about DNA oxidative damage in late-life depression. This study aims to evaluate whether older adults with late-life depression (LLD) has increased DNA oxidative damage compared to healthy older adults. METHODS: We included 92 participants (57 with LLD [73.2 ± 7.7 years-old] and 35 non-depressed subjects (Controls) [70.5 ± 7.4 years-old]). We analyzed the plasma 8­hydroxy-2'-deoxyguanosine (8-oxo-dG), a marker of DNA oxidation, using a commercially-available ELISA assay. RESULTS: LLD participants had significantly higher 8-oxo-DG levels compared to controls (P<0.001). 8-oxo-dG levels were significantly correlated with depressive symptoms as assessed by the Hamilton Depression Rating Scale (rho=0.34, p<0.001). The plasma levels of 8-OHdG were not significantly correlated with other clinical, neurocognitive, and demographic variables. LIMITATIONS: Our current results are limited by the relatively small sample size, cross-sectional design, and the recruitment of participants in tertiary center for assessment and treatment of LLD. CONCLUSIONS: Older adults with LLD have increased DNA oxidative damage. Our findings provide additional evidence for elevated oxidative stress activity in LLD and the possible activation of age-related biological pathways and enhanced biological aging changes in LLD.


Subject(s)
Depressive Disorder, Major , 8-Hydroxy-2'-Deoxyguanosine , Aged , Aged, 80 and over , Aging , Cross-Sectional Studies , DNA Damage , Depressive Disorder, Major/genetics , Humans , Middle Aged , Oxidative Stress/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...