Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 116(4): 1765-1784, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27466135

ABSTRACT

The neuronal representation of luminance contrast has not been thoroughly studied in birds. Here we present a detailed quantitative analysis of the contrast response of 120 individual neurons recorded from the visual wulst of awake burrowing owls (Athene cunicularia). Stimuli were sine-wave gratings presented within the cell classical receptive field and optimized in terms of eye preference, direction of drift, and spatiotemporal frequency. As contrast intensity was increased from zero to near 100%, most cells exhibited a monotonic response profile with a compressive, at times saturating, nonlinearity at higher contrasts. However, contrast response functions were found to have a highly variable shape across cells. With the view to capture a systematic trend in the data, we assessed the performance of four plausible models (linear, power, logarithmic, and hyperbolic ratio) using classical goodness-of-fit measures and more rigorous statistical tools for multimodel inferences based on the Akaike information criterion. From this analysis, we conclude that a high degree of model uncertainty is present in our data, meaning that no single descriptor is able on its own to capture the heterogeneous nature of single-unit contrast responses in the wulst. We further show that the generalizability of the hyperbolic ratio model established, for example, in the primary visual cortex of cats and monkeys is not tenable in the owl wulst mainly because most neurons in this area have a much wider dynamic range that starts at low contrast. The challenge for future research will be to understand the functional implications of these findings.


Subject(s)
Contrast Sensitivity/physiology , Neurons/physiology , Strigiformes/physiology , Telencephalon/physiology , Visual Pathways/physiology , Action Potentials , Animals , Microelectrodes , Models, Statistical , Photic Stimulation , Wakefulness
2.
Comput Methods Programs Biomed ; 112(3): 607-23, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23993408

ABSTRACT

The dynamic, accurate measurement of pupil size is extremely valuable for studying a large number of neuronal functions and dysfunctions. Despite tremendous and well-documented progress in image processing techniques for estimating pupil parameters, comparatively little work has been reported on practical hardware issues involved in designing image acquisition systems for pupil analysis. Here, we describe and validate the basic features of such a system which is based on a relatively compact, off-the-shelf, low-cost FireWire digital camera. We successfully implemented two configurable modes of video record: a continuous mode and an event-triggered mode. The interoperability of the whole system is guaranteed by a set of modular software components hosted on a personal computer and written in Labview. An offline analysis suite of image processing algorithms for automatically estimating pupillary and eyelid parameters were assessed using data obtained in human subjects. Our benchmark results show that such measurements can be done in a temporally precise way at a sampling frequency of up to 120 Hz and with an estimated maximum spatial resolution of 0.03 mm. Our software is made available free of charge to the scientific community, allowing end users to either use the software as is or modify it to suit their own needs.


Subject(s)
Automation , Blinking , Photography , Pupil , Security Measures , Computers , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...