Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Curr Neuropharmacol ; 21(2): 219-234, 2023.
Article in English | MEDLINE | ID: mdl-36154605

ABSTRACT

Advanced glycation end products (AGEs) are compounds formed after the non-enzymatic addition of reducing sugars to lipids, proteins, and nucleic acids. They are associated with the development of various clinical complications observed in diabetes and cardiovascular diseases, such as retinopathy, nephropathy, diabetic neuropathy, and others. In addition, compelling evidence indicates that these molecules participate in the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Multiple cellular and molecular alterations triggered by AGEs that could alter homeostasis have been identified. One of the main targets for AGE signaling is the receptor for advanced glycation end-products (RAGE). Importantly, this receptor is the target of not only AGEs, but also amyloid ß peptides, HMGB1 (high-mobility group box-1), members of the S100 protein family, and glycosaminoglycans. The activation of this receptor induces intracellular signaling cascades that are involved in pathological processes and cell death. Therefore, RAGE represents a key target for pharmacological interventions in neurodegenerative diseases. This review will discuss the various effects of AGEs and RAGE activation in the pathophysiology of neurodegenerative diseases, as well as the currently available pharmacological tools and promising drug candidates.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Amyloid beta-Peptides , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism
2.
Eur J Med Chem ; 244: 114876, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36343429

ABSTRACT

Chagas disease is a major public health problem caused by Trypanosoma cruzi, with an estimated 6-7 million people infected and 70 million at risk of infection. T. brucei gambiense and T. brucei rhodesiense are two subspecies of related parasites that cause human African trypanosomiasis, a neglected tropical disease with also millions of people at risk of infection. Pharmacotherapy for both diseases suffers from low efficacy, side effects, or drug resistance. Recently, we reported a noncovalent competitive inhibitor of cruzain (IC50 26 µM, Ki 3 µM) and TbrCatL (IC50 50 µM), two cysteine proteases considered promising drug targets for trypanosomiasis. Here, we describe the design and synthesis of derivatives of our lead compound. The new thiosemicarbazone derivatives showed potency in the nanomolar concentration range against the two enzymes, but they were later characterized as aggregators. Nevertheless, the thiosemicarbazone derivatives showed promising antiparasitic activities against T. b. brucei (EC50 13-49.7 µM) and T. cruzi (EC50 0.027-0.59 µM) under in vitro conditions. The most active thiosemicarbazone was 200-fold more potent than the current anti-chagasic drug, benznidazole, and showed a selectivity index of 370 versus myoblast cells. We have identified an excellent candidate for further optimization and in vivo studies.


Subject(s)
Chagas Disease , Thiosemicarbazones , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma cruzi , Humans , Trypanocidal Agents/pharmacology , Thiosemicarbazones/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Chagas Disease/drug therapy
3.
Neuropharmacology ; 160: 107785, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31541651

ABSTRACT

Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-ß (Aß) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aß induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aß injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aß accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aß stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Benzamides/pharmacology , Neuroprotective Agents/pharmacology , Pyrazoles/pharmacology , Receptor, Metabotropic Glutamate 5/drug effects , Allosteric Regulation , Amyloid beta-Peptides/adverse effects , Animals , Benzamides/administration & dosage , Disease Models, Animal , Hippocampus/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Peptide Fragments/adverse effects , Pyrazoles/administration & dosage , Receptor, Metabotropic Glutamate 5/metabolism
4.
Curr Med Chem ; 26(23): 4435-4453, 2019.
Article in English | MEDLINE | ID: mdl-28799498

ABSTRACT

Cysteine proteases are essential hydrolytic enzymes present in the majority of organisms, including viruses and unicellular parasites. Despite the high sequence identity displayed among these proteins, specific structural features across different species grant distinct functions to these biomolecules, frequently related to pathological conditions. Consequently, their relevance as promising targets for potential specific inhibitors has been highlighted and occasionally validated in recent decades. In this review, we discuss the recent outcomes of structure-based campaigns aiming the discovery of new inhibitor prototypes against cruzain and falcipain, as alternative therapeutic tools for Chagas disease and malaria treatments, respectively. Computational and synthetic approaches have been combined on hit optimization strategies and are also discussed herein. These rationales are extended to additional tropical infectious and neglected pathologies, such as schistosomiasis, leishmaniasis and babesiosis, and also to Alzheimer's Disease, a widespread neurodegenerative disease poorly managed by currently available drugs and recently linked to particular physiopathological roles of human cysteine proteases.


Subject(s)
Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Animals , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure
5.
Braz. j. pharm. sci ; 45(3): 515-525, July-Sept. 2009. graf, tab
Article in English | LILACS | ID: lil-533180

ABSTRACT

Peel off facial masks, based on polyvinyl alcohol (PVA), are formulations that, after application and drying, form an occlusive film over the face. After removing, they provide cleanness, tensor and moisturizing effects, removing dead cells, residues and other materials deposited on the stratum corneous. The soybean extract fermented by Bifidobacterium animalis has sugars, amino acids, peptides, proteins and free isoflavonoids in high concentrations, when compared to the unfermented extract, providing benefits to the cosmetic formulations like anti-aging effect, moisture, tensor action and emollience. The cosmetic bases of peel off facial masks, added with 5.0 percent w/w of fermented soybean extract, were submitted to Preliminary and Accelerated Stability Studies. Eight (8) preparations were evaluated in several conditions of temperature (-10.0, 5.0, 22.0 and 45.0 ºC) and time (maximum of 15 days), comparing the results with the initial condition (48 h after preparation). The variables observed were: organoleptic characteristics, pH and appearing viscosity value and film drying time. The preparation containing 17.0 percent w/w of PVA and 0.5 percent w/w of guar gum was selected between the eight preparations initially prepared, because it presented the best performance in the stability test, being recommended storage at low temperatures (5.0 ºC).


As máscaras faciais peel off a base de álcool polivinílico (PVA) são formulações que, após a aplicação e secagem, formam um filme oclusivo sobre a face e, após sua remoção, conferem limpeza, ação tensora e hidratação à pele, retirando células mortas do estrato córneo, resíduos e outros materiais depositados. O extrato de soja fermentado por Bifidobacterium animalis possui açúcares, aminoácidos, peptídeos, e alto teor de isoflavonas na forma livre, quando comparado ao leite não fermentado, propiciando benefícios às formulações cosméticas, como ação antienvelhecimento, hidratação, efeito tensor e emoliência. As bases cosméticas de máscaras faciais peel off, acrescidas de extrato de soja fermentado 5,0 por cento p/p, foram submetidas aos ensaios de Estabilidade Preliminar e Acelerada, avaliando-se 8 preparações em diversas condições de temperatura (-10,0; 5,0; 22,0 e 45,0 ºC) e tempo (máximo de 15 dias), em relação à condição inicial (48 h após o preparo). As variáveis observadas envolveram: características organolépticas, valor de pH, viscosidade aparente e tempo de secagem do filme. A preparação contendo 17,0 por cento p/p de PVA e 0,5 por cento p/p de goma guar foi a selecionada dentre as oito preparações elaboradas inicialmente, por ter apresentado melhor desempenho no teste de estabilidade, sendo recomendado o armazenamento em temperatura reduzida (5,0 ºC).


Subject(s)
Bifidobacterium , Cosmetic Stability , Glycine max/chemistry , Additives in Cosmetics , Cosmetic Microbiology , Cosmetic Technology , Facial Masks
SELECTION OF CITATIONS
SEARCH DETAIL
...