Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Clin Monit Comput ; 36(5): 1297-1303, 2022 10.
Article in English | MEDLINE | ID: mdl-34606005

ABSTRACT

Hypoglycemia is a common occurrence in critically ill patients and is associated with significant mortality and morbidity. We developed a machine learning model to predict hypoglycemia by using a multicenter intensive care unit (ICU) electronic health record dataset. Machine learning algorithms were trained and tested on patient data from the publicly available eICU Collaborative Research Database. Forty-four features including patient demographics, laboratory test results, medications, and vitals sign recordings were considered. The outcome of interest was the occurrence of a hypoglycemic event (blood glucose < 72 mg/dL) during a patient's ICU stay. Machine learning models used data prior to the second hour of the ICU stay to predict hypoglycemic outcome. Data from 61,575 patients who underwent 82,479 admissions at 199 hospitals were considered in the study. The best-performing predictive model was the eXtreme gradient boosting model (XGBoost), which achieved an area under the received operating curve (AUROC) of 0.85, a sensitivity of 0.76, and a specificity of 0.76. The machine learning model developed has strong discrimination and calibration for the prediction of hypoglycemia in ICU patients. Prospective trials of these models are required to evaluate their clinical utility in averting hypoglycemia within critically ill patient populations.


Subject(s)
Critical Illness , Hypoglycemia , Blood Glucose , Electronic Health Records , Humans , Hypoglycemia/diagnosis , Hypoglycemic Agents , Intensive Care Units , Machine Learning , Prospective Studies , Retrospective Studies
2.
Sci Data ; 8(1): 80, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692359

ABSTRACT

Analysis of real-world glucose and insulin clinical data recorded in electronic medical records can provide insights into tailored approaches to clinical care, yet presents many analytic challenges. This work makes publicly available a dataset that contains the curated entries of blood glucose readings and administered insulin on a per-patient basis during ICU admissions in the Medical Information Mart for Intensive Care (MIMIC-III) database version 1.4. Also, the present study details the data curation process used to extract and match glucose values to insulin therapy. The curation process includes the creation of glucose-insulin pairing rules according to clinical expert-defined physiologic and pharmacologic parameters. Through this approach, it was possible to align nearly 76% of insulin events to a preceding blood glucose reading for nearly 9,600 critically ill patients. This work has the potential to reveal trends in real-world practice for the management of blood glucose. This data extraction and processing serve as a framework for future studies of glucose and insulin in the intensive care unit.


Subject(s)
Blood Glucose/analysis , Electronic Health Records , Insulin/analysis , Intensive Care Units , Data Curation , Humans
3.
BMJ Health Care Inform ; 28(1)2021 Jan.
Article in English | MEDLINE | ID: mdl-33455913

ABSTRACT

OBJECTIVE: Gastrointestinal (GI) bleeding commonly requires intensive care unit (ICU) in cases of potentialhaemodynamiccompromise or likely urgent intervention. However, manypatientsadmitted to the ICU stop bleeding and do not require further intervention, including blood transfusion. The present work proposes an artificial intelligence (AI) solution for the prediction of rebleeding in patients with GI bleeding admitted to ICU. METHODS: A machine learning algorithm was trained and tested using two publicly available ICU databases, the Medical Information Mart for Intensive Care V.1.4 database and eICU Collaborative Research Database using freedom from transfusion as a proxy for patients who potentially did not require ICU-level care. Multiple initial observation time frames were explored using readily available data including labs, demographics and clinical parameters for a total of 20 covariates. RESULTS: The optimal model used a 5-hour observation period to achieve an area under the curve of the receiving operating curve (ROC-AUC) of greater than 0.80. The model was robust when tested against both ICU databases with a similar ROC-AUC for all. CONCLUSIONS: The potential disruptive impact of AI in healthcare innovation is acknowledge, but awareness of AI-related risk on healthcare applications and current limitations should be considered before implementation and deployment. The proposed algorithm is not meant to replace but to inform clinical decision making. Prospective clinical trial validation as a triage tool is warranted.


Subject(s)
Artificial Intelligence , Blood Transfusion , Gastrointestinal Hemorrhage , Intensive Care Units , Blood Transfusion/statistics & numerical data , Female , Gastrointestinal Hemorrhage/therapy , Humans , Intensive Care Units/statistics & numerical data , Male , Prospective Studies , ROC Curve
4.
PLoS One ; 15(4): e0230876, 2020.
Article in English | MEDLINE | ID: mdl-32240233

ABSTRACT

Emergency department triage is the first point in time when a patient's acuity level is determined. The time to assign a priority at triage is short and it is vital to accurately stratify patients at this stage, since under-triage can lead to increased morbidity, mortality and costs. Our aim was to present a model that can assist healthcare professionals in triage decision making, namely in the stratification of patients through the risk prediction of a composite critical outcome-mortality and cardiopulmonary arrest. Our study cohort consisted of 235826 adult patients triaged at a Portuguese Emergency Department from 2012 to 2016. Patients were assigned to emergent, very urgent or urgent priorities of the Manchester Triage System (MTS). Demographics, clinical variables routinely collected at triage and the patients' chief complaint were used. Logistic regression, random forests and extreme gradient boosting were developed using all available variables. The term frequency-inverse document frequency (TF-IDF) natural language processing weighting factor was applied to vectorize the chief complaint. Stratified random sampling was used to split the data into train (70%) and test (30%) data sets. Ten-fold cross validation was performed in train to optimize model hyper-parameters. The performance obtained with the best model was compared against the reference model-a regularized logistic regression trained using only triage priorities. Extreme gradient boosting exhibited good calibration properties and yielded areas under the receiver operating characteristic and precision-recall curves of 0.96 (95% CI 0.95-0.97) and 0.31 (95% CI 0.26-0.36), respectively. The predictors ranked with higher importance by this model were the Glasgow coma score, the patients' age, pulse oximetry and arrival mode. Compared to the reference, the extreme gradient boosting model using clinical variables and the chief complaint presented higher recall for patients assigned MTS-3 and can identify those who are at risk of the composite outcome.


Subject(s)
Forecasting/methods , Risk Assessment/methods , Triage/methods , Adult , Cohort Studies , Emergency Service, Hospital/trends , Female , Heart Arrest , Hospitalization , Humans , Logistic Models , Machine Learning , Male , Middle Aged , Natural Language Processing , Patient Acuity , Portugal , ROC Curve , Risk Factors
5.
PLoS One ; 15(3): e0229331, 2020.
Article in English | MEDLINE | ID: mdl-32126097

ABSTRACT

The risk stratification of patients in the emergency department begins at triage. It is vital to stratify patients early based on their severity, since undertriage can lead to increased morbidity, mortality and costs. Our aim was to present a new approach to assist healthcare professionals at triage in the stratification of patients and in identifying those with higher risk of ICU admission. Adult patients assigned Manchester Triage System (MTS) or Emergency Severity Index (ESI) 1 to 3 from a Portuguese and a United States Emergency Departments were analyzed. Variables routinely collected at triage were used and natural language processing was applied to the patient chief complaint. Stratified random sampling was applied to split the data in train (70%) and test (30%) sets and 10-fold cross validation was performed for model training. Logistic regression, random forests, and a random undersampling boosting algorithm were used. We compared the performance obtained with the reference model-using only triage priorities-with the models using additional variables. For both hospitals, a logistic regression model achieved higher overall performance, yielding areas under the receiver operating characteristic and precision-recall curves of 0.91 (95% CI 0.90-0.92) and 0.30 (95% CI 0.27-0.33) for the United States hospital and of 0.85 (95% CI 0.83-0.86) and 0.06 (95% CI 0.05-0.07) for the Portuguese hospital. Heart rate, pulse oximetry, respiratory rate and systolic blood pressure were the most important predictors of ICU admission. Compared to the reference models, the models using clinical variables and the chief complaint presented higher recall for patients assigned MTS/ESI 3 and can identify patients assigned MTS/ESI 3 who are at risk for ICU admission.


Subject(s)
Patient Admission/statistics & numerical data , Triage/methods , Adult , Aged , Aged, 80 and over , Emergency Service, Hospital , Female , Humans , Intensive Care Units , Logistic Models , Machine Learning , Male , Middle Aged , Natural Language Processing , Portugal/epidemiology , Risk Assessment , United States/epidemiology
6.
Artif Intell Med ; 102: 101762, 2020 01.
Article in English | MEDLINE | ID: mdl-31980099

ABSTRACT

MOTIVATION: Emergency Departments' (ED) modern triage systems implemented worldwide are solely based upon medical knowledge and experience. This is a limitation of these systems, since there might be hidden patterns that can be explored in big volumes of clinical historical data. Intelligent techniques can be applied to these data to develop clinical decision support systems (CDSS) thereby providing the health professionals with objective criteria. Therefore, it is of foremost importance to identify what has been hampering the application of such systems for ED triage. OBJECTIVES: The objective of this paper is to assess how intelligent CDSS for triage have been contributing to the improvement of quality of care in the ED as well as to identify the challenges they have been facing regarding implementation. METHODS: We applied a standard scoping review method with the manual search of 6 digital libraries, namely: ScienceDirect, IEEE Xplore, Google Scholar, Springer, MedlinePlus and Web of Knowledge. Search queries were created and customized for each digital library in order to acquire the information. The core search consisted of searching in the papers' title, abstract and key words for the topics "triage", "emergency department"/"emergency room" and concepts within the field of intelligent systems. RESULTS: From the review search, we found that logistic regression was the most frequently used technique for model design and the area under the receiver operating curve (AUC) the most frequently used performance measure. Beside triage priority, the most frequently used variables for modelling were patients' age, gender, vital signs and chief complaints. The main contributions of the selected papers consisted in the improvement of a patient's prioritization, prediction of need for critical care, hospital or Intensive Care Unit (ICU) admission, ED Length of Stay (LOS) and mortality from information available at the triage. CONCLUSIONS: In the papers where CDSS were validated in the ED, the authors found that there was an improvement in the health professionals' decision-making thereby leading to better clinical management and patients' outcomes. However, we found that more than half of the studies lacked this implementation phase. We concluded that for these studies, it is necessary to validate the CDSS and to define key performance measures in order to demonstrate the extent to which incorporation of CDSS at triage can actually improve care.


Subject(s)
Artificial Intelligence , Decision Support Systems, Clinical , Emergency Service, Hospital , Triage/methods , Emergency Medical Services , Humans , Machine Learning
7.
ScientificWorldJournal ; 2015: 212703, 2015.
Article in English | MEDLINE | ID: mdl-26345130

ABSTRACT

Left ventricular ejection fraction (LVEF) constitutes an important physiological parameter for the assessment of cardiac function, particularly in the settings of coronary artery disease and heart failure. This study explores the use of routinely and easily acquired variables in the intensive care unit (ICU) to predict severely depressed LVEF following ICU admission. A retrospective study was conducted. We extracted clinical physiological variables derived from ICU monitoring and available within the MIMIC II database and developed a fuzzy model using sequential feature selection and compared it with the conventional logistic regression (LR) model. Maximum predictive performance was observed using easily acquired ICU variables within 6 hours after admission and satisfactory predictive performance was achieved using variables acquired as early as one hour after admission. The fuzzy model is able to predict LVEF ≤ 25% with an AUC of 0.71 ± 0.07, outperforming the LR model, with an AUC of 0.67 ± 0.07. To the best of the authors' knowledge, this is the first study predicting severely impaired LVEF using multivariate analysis of routinely collected data in the ICU. We recommend inclusion of these findings into triaged management plans that balance urgency with resources and clinical status, particularly for reducing the time of echocardiographic examination.


Subject(s)
Fuzzy Logic , Heart Failure/diagnosis , Heart Failure/physiopathology , Intensive Care Units , Models, Theoretical , Stroke Volume , Ventricular Function, Left , Algorithms , Biomarkers , Databases, Factual , Heart Failure/etiology , Hemodynamics , Humans , Patient Admission , Prognosis , Retrospective Studies , Severity of Illness Index
8.
ScientificWorldJournal ; 2014: 365364, 2014.
Article in English | MEDLINE | ID: mdl-24578630

ABSTRACT

The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle.


Subject(s)
Construction Industry/economics , Models, Econometric , Building Codes , Costs and Cost Analysis
9.
Artif Intell Med ; 58(1): 63-72, 2013 May.
Article in English | MEDLINE | ID: mdl-23428358

ABSTRACT

BACKGROUND: The multiplicity of information sources for data acquisition in modern intensive care units (ICUs) makes the resulting databases particularly susceptible to missing data. Missing data can significantly affect the performance of predictive risk modeling, an important technique for developing medical guidelines. The two most commonly used strategies for managing missing data are to impute or delete values, and the former can cause bias, while the later can cause both bias and loss of statistical power. OBJECTIVES: In this paper we present a new approach for managing missing data in ICU databases in order to improve overall modeling performance. METHODS: We use a statistical classifier followed by fuzzy modeling to more accurately determine which missing data should be imputed and which should not. We firstly develop a simulation test bed to evaluate performance, and then translate that knowledge using exactly the same database as previously published work by [13]. RESULTS: In this work, test beds resulted in datasets with missing data ranging 10-50%. Using this new approach to missing data we are able to significantly improve modeling performance parameters such as accuracy of classifications by an 11%, sensitivity by 13%, and specificity by 10%, including also area under the receiver-operator curve (AUC) improvement of up to 13%. CONCLUSIONS: In this work, we improve modeling performance in a simulated test bed, and then confirm improved performance replicating previously published work by using the proposed approach for missing data classification. We offer this new method to other researchers who wish to improve predictive risk modeling performance in the ICU through advanced missing data management.


Subject(s)
Databases, Factual/statistics & numerical data , Fuzzy Logic , Intensive Care Units/statistics & numerical data , Models, Statistical , Databases, Factual/standards , Humans , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...