Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 10 16.
Article in English | MEDLINE | ID: mdl-37843985

ABSTRACT

Datasets collected in neuroscientific studies are of ever-growing complexity, often combining high-dimensional time series data from multiple data acquisition modalities. Handling and manipulating these various data streams in an adequate programming environment is crucial to ensure reliable analysis, and to facilitate sharing of reproducible analysis pipelines. Here, we present Pynapple, the PYthon Neural Analysis Package, a lightweight python package designed to process a broad range of time-resolved data in systems neuroscience. The core feature of this package is a small number of versatile objects that support the manipulation of any data streams and task parameters. The package includes a set of methods to read common data formats and allows users to easily write their own. The resulting code is easy to read and write, avoids low-level data processing and other error-prone steps, and is open source. Libraries for higher-level analyses are developed within the Pynapple framework but are contained within a collaborative repository of specialized and continuously updated analysis routines. This provides flexibility while ensuring long-term stability of the core package. In conclusion, Pynapple provides a common framework for data analysis in neuroscience.


Subject(s)
Neurosciences , Software , Data Analysis
2.
Nat Commun ; 11(1): 2524, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32433538

ABSTRACT

The anterior thalamus is a key relay of neuronal signals within the limbic system. During sleep, the occurrence of hippocampal sharp wave-ripples (SWRs), believed to mediate consolidation of explicit memories, is modulated by thalamocortical network activity, yet how information is routed around SWRs and how this communication depends on neuronal dynamics remains unclear. Here, by simultaneously recording ensembles of neurons in the anterior thalamus and local field potentials in the CA1 area of the hippocampus, we show that the head-direction (HD) cells of the anterodorsal nucleus are set in stable directions immediately before SWRs. This response contrasts with other thalamic cells that exhibit diverse couplings to the hippocampus related to their intrinsic dynamics but independent of their anatomical location. Thus, our data suggest a specific and homogeneous contribution of the HD signal to hippocampal activity and a diverse and cell-specific coupling of non-HD neurons.


Subject(s)
Hippocampus/physiology , Thalamus/physiology , Animals , Male , Memory , Mice , Neurons/physiology , Sleep
3.
Sci Rep ; 9(1): 19904, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31857636

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Prog Neurobiol ; 183: 101693, 2019 12.
Article in English | MEDLINE | ID: mdl-31550513

ABSTRACT

Our thoughts and sensations are examples of cognitive processes that emerge from the collective activity of billions of neurons in the brain. Thalamocortical circuits form the canonical building-blocks of the brain networks supporting the most complex cognitive functions. How these neurons communicate and interact has been the focus of extensive research in "classical" sensory systems. Similar to visual, auditory or somatosensory thalamic pathways, one primary nucleus in the anterior (limbic) thalamus - the antero-dorsal nucleus - conveys a low-level input, the head-direction (HD) signal, to the cortex. Its activity is controlled in large part by the vestibular system and is relayed by a serially connected group of subcortical nuclei to the thalamus. HD cells serve as the brain's internal 'compass' and each of them is tuned to the specific direction the animal is facing. Recently, recordings of HD neuronal populations in the antero-dorsal nucleus and its main cortical target, the post-subiculum, have revealed that neuronal activity in the thalamocortical HD network are largely invariant to brain states at three levels: static (preserved functional organization), temporal (same drifting speed during exploration and Rapid Eye Movement sleep) and inter-area interaction (from thalamus to cortex). These observations suggest that HD neurons are certainly more driven by intrinsic wiring and dynamics than by sensory inputs and that the information flows bottom-up, even during sleep. Altogether, thalamic HD cells convey a highly reliable, near-noiseless signal that broadly influences the emergence of spatial maps in the cortex and may play a key role in sleep-dependent memory processes.


Subject(s)
Cerebral Cortex/physiology , Head/physiology , Memory/physiology , Nerve Net/physiology , Sensation/physiology , Space Perception/physiology , Spatial Navigation/physiology , Thalamus/physiology , Animals , Humans
5.
PLoS Comput Biol ; 14(3): e1006041, 2018 03.
Article in English | MEDLINE | ID: mdl-29565979

ABSTRACT

Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains.


Subject(s)
Brain Mapping/methods , Models, Neurological , Nonlinear Dynamics , Action Potentials/physiology , Animals , Bayes Theorem , Brain/physiology , Cerebral Cortex/physiology , Mice , Neurons/physiology , Sleep/physiology , Spatio-Temporal Analysis , Supervised Machine Learning , Thalamus/physiology , Wakefulness/physiology
6.
Behav Brain Res ; 355: 76-89, 2018 12 14.
Article in English | MEDLINE | ID: mdl-29061387

ABSTRACT

Accumulating evidence suggest that human behavior in trial-and-error learning tasks based on decisions between discrete actions may involve a combination of reinforcement learning (RL) and working-memory (WM). While the understanding of brain activity at stake in this type of tasks often involve the comparison with non-human primate neurophysiological results, it is not clear whether monkeys use similar combined RL and WM processes to solve these tasks. Here we analyzed the behavior of five monkeys with computational models combining RL and WM. Our model-based analysis approach enables to not only fit trial-by-trial choices but also transient slowdowns in reaction times, indicative of WM use. We found that the behavior of the five monkeys was better explained in terms of a combination of RL and WM despite inter-individual differences. The same coordination dynamics we used in a previous study in humans best explained the behavior of some monkeys while the behavior of others showed the opposite pattern, revealing a possible different dynamics of WM process. We further analyzed different variants of the tested models to open a discussion on how the long pretraining in these tasks may have favored particular coordination dynamics between RL and WM. This points towards either inter-species differences or protocol differences which could be further tested in humans.


Subject(s)
Adaptation, Psychological , Computer Simulation , Memory, Short-Term , Models, Psychological , Problem Solving , Reinforcement, Psychology , Animals , Bayes Theorem , Haplorhini , Psychological Tests , Reaction Time , Transfer, Psychology
7.
Sci Rep ; 7(1): 17812, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259243

ABSTRACT

How do we translate self-motion into goal-directed actions? Here we investigate the cognitive architecture underlying self-motion processing during exploration and goal-directed behaviour. The task, performed in an environment with limited and ambiguous external landmarks, constrained mice to use self-motion based information for sequence-based navigation. The post-behavioural analysis combined brain network characterization based on c-Fos imaging and graph theory analysis as well as computational modelling of the learning process. The study revealed a widespread network centred around the cerebral cortex and basal ganglia during the exploration phase, while a network dominated by hippocampal and cerebellar activity appeared to sustain sequence-based navigation. The learning process could be modelled by an algorithm combining memory of past actions and model-free reinforcement learning, which parameters pointed toward a central role of hippocampal and cerebellar structures for learning to translate self-motion into a sequence of goal-directed actions.


Subject(s)
Cerebellum/physiology , Hippocampus/physiology , Learning/physiology , Neural Pathways/physiology , Orientation/physiology , Space Perception/physiology , Animals , Basal Ganglia/physiology , Cerebral Cortex/physiology , Computer Simulation , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Models, Neurological
8.
PeerJ Comput Sci ; 3: e142, 2017.
Article in English | MEDLINE | ID: mdl-34722870

ABSTRACT

Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.

9.
Front Behav Neurosci ; 9: 225, 2015.
Article in English | MEDLINE | ID: mdl-26379518

ABSTRACT

Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus-response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal.

SELECTION OF CITATIONS
SEARCH DETAIL
...