Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 536(1): 426-433, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29225097

ABSTRACT

Cinchonidine and Theophylline vitrification abilities have been investigated by differential and fast scanning calorimetry. These active pharmaceutical compounds are known in the literature to have a very high tendency to crystallize which has been confirmed by classical differential scanning calorimetry. Due to the growing interest in amorphous pharmaceutical compounds, their possible vitrifications have been investigated by fast scanning calorimetry. This work shows the high potential of this advanced thermal analysis technique to investigate the vitrification of active pharmaceutical compounds by melt-quenching protocol. For the first time, glass transitions of Cinchonidine and Theophylline were measured. From Cinchonidine, it has been shown that complete glassy state can be obtained by cooling from the melt at 2000K/s. Crystallization has also been suppressed by cooling down from the melt at 2K/s. However, such rate does not avoid the formation of nuclei. Theophylline crystallization process has been suppressed by a melt-quenching protocol carried out with a cooling rate of 4000K/s. However, the phenomenon of nuclei formation upon cooling seems unavoidable at this cooling rate. For both active pharmaceutical compounds, physical aging has been observed to play a role on the nuclei formation below the glass transition leading to modify the subsequent crystallization.


Subject(s)
Pharmaceutical Preparations/chemistry , Calorimetry, Differential Scanning/methods , Crystallization/methods , Glass/chemistry , Phase Transition , Temperature , Theophylline/chemistry , Vitrification
2.
J Phys Chem B ; 121(32): 7729-7740, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28726403

ABSTRACT

A dielectric relaxation spectroscopy (DRS) study was performed to investigate the molecular mobility of amorphous chiral diprophylline (DPL). For this purpose, both racemic DPL and a single enantiomer of DPL were considered. After fast cooling from the melt at very low temperature (-140 °C), progressive heating below and above the glass transition (Tg ≈ 37 °C) induces two secondary relaxations (γ- and δ-) and primary relaxations (α-) for both enantiomeric compositions. After chemical purification of our samples by means of cooling recrystallization, no γ-process could be detected by DRS. Hence, it was highlighted that the molecular mobility in the glassy state is influenced by the presence of theophylline (TPH), the main impurity in DPL samples. We also proved that the dynamic behavior of a single enantiomer and the racemic mixture of the same purified compound are quasi-identical. This study demonstrates that the relative stability and the molecular mobility of chiral amorphous drugs are strongly sensitive to chemical purity.


Subject(s)
Pharmaceutical Preparations/chemistry , Crystallization , Dielectric Spectroscopy , Phase Transition , Stereoisomerism , Temperature , Theophylline/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...