Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 125(44): 12365-12377, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34726409

ABSTRACT

Vanadium-containing glasses have aroused interest in several fields such as electrodes for energy storage, semiconducting glasses, and nuclear waste disposal. The addition of V2O5, even in small amounts, can greatly alter the physical properties and chemical durability of glasses; however, the structural role of vanadium in these multicomponent glasses and the structural origins of these property changes are still poorly understood. We present a comprehensive study that integrates advanced characterizations and atomistic simulations to understand the composition-structure-property relationships of a series of vanadium-containing aluminoborosilicate glasses. UV-vis spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure (XANES) have been used to investigate the complex distribution of vanadium oxidation states as a function of composition in a series of six-component aluminoborosilicate glasses. High-energy X-ray diffraction and molecular dynamics simulations were performed to extract the detailed short- and medium-range atomistic structural information such as bond distance, coordination number, bond angle, and network connectivity, based on recently developed vanadium potential parameters. It was found that vanadium mainly exists in two oxidation states: V5+ and V4+, with the former being dominant (∼80% from XANES) in most compositions. V5+ ions were found to exist in 4-, 5-, and 6-fold coordination, while V4+ ions were mainly in 4-fold coordination. The percentage of 4-fold-coordinated boron and network connectivity initially increased with increasing V2O5 up to around 5 mol % but then decreased with higher V2O5 contents. The structural role of vanadium and the effect on glass structure and properties are discussed, providing insights into future studies of sophisticated structural descriptors to predict glass properties from composition and/or structure and aiding the formulation of borosilicate glasses for nuclear waste disposal and other applications.

2.
Chem Rev ; 121(20): 12327-12383, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34259500

ABSTRACT

High-level radioactive waste is accumulating at temporary storage locations around the world and will eventually be placed in deep geological repositories. The waste forms and containers will be constructed from glass, crystalline ceramic, and metallic materials, which will eventually come into contact with water, considering that the period of performance required to allow sufficient decay of dangerous radionuclides is on the order of 105-106 years. Corrosion of the containers and waste forms in the aqueous repository environment is therefore a concern. This Review describes the recent advances of the field of materials corrosion that are relevant to fundamental materials science issues associated with the long-term performance assessment and the design of materials with improved performance, where performance is defined as resistance to aqueous corrosion. Glass, crystalline ceramics, and metals are discussed separately, and the near-field interactions of these different material classes are also briefly addressed. Finally, recommendations for future directions of study are provided.


Subject(s)
Radioactive Waste , Corrosion , Radioactive Waste/analysis
3.
Environ Sci Technol ; 55(11): 7605-7614, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33974404

ABSTRACT

Advanced materials and processes are required to separate halides and fission products from complex salt waste streams associated with the chemical reprocessing of used nuclear fuels and molten salt reactor technologies for immobilization into chemically durable waste forms. In this work, we explore an innovative concept using metal halide perovskites as advanced host phases to incorporate Cs and Cl with very high waste loadings. Wet chemistry-synthesized Cs2SnCl6 powders from CsCl salt solutions are successfully encapsulated into a silica matrix to form a composite using low-temperature spark plasma sintering with tunable Cs and Cl loadings up to 31 and 26 wt %, respectively. Chemical durability testing of the composite waste forms by semi-dynamic leaching experiments demonstrates that an incongruent leaching mechanism dominates the release of Cs and Cl. The metal halide perovskite-silica composite waste forms display exceptional chemical durability with the long-term release rates of Cs and Cl comparable to or outperforming the state-of-the-art waste form materials but with significantly higher waste loadings. The scalable synthesis of the metal halide perovskite from wet chemistry processes opens up new opportunities in designing advanced waste forms for salt wastes with very high waste loadings and exceptional chemical durability for the sustainable development of advanced fuel cycles and next-generation reactor technologies.


Subject(s)
Chlorides , Silicon Dioxide , Calcium Compounds , Metals , Oxides , Titanium
5.
Nat Mater ; 19(3): 310-316, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31988512

ABSTRACT

The US plan for high-level nuclear waste includes the immobilization of long-lived radionuclides in glass or ceramic waste forms in stainless-steel canisters for disposal in deep geological repositories. Here we report that, under simulated repository conditions, corrosion could be significantly accelerated at the interfaces of different barrier materials, which has not been considered in the current safety and performance assessment models. Severe localized corrosion was found at the interfaces between stainless steel and a model nuclear waste glass and between stainless steel and a ceramic waste form. The accelerated corrosion can be attributed to changes of solution chemistry and local acidity/alkalinity within a confined space, which significantly alter the corrosion of both the waste-form materials and the metallic canisters. The corrosion that is accelerated by the interface interaction between dissimilar materials could profoundly impact the service life of the nuclear waste packages, which, therefore, should be carefully considered when evaluating the performance of waste forms and their packages. Moreover, compatible barriers should be selected to further optimize the performance of the geological repository system.

6.
ACS Appl Mater Interfaces ; 9(38): 32907-32919, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28910079

ABSTRACT

In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3 solutions followed by drying and Ag+ reduction under H2/Ar to form Ag0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na-Al-Si-O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were >0.5 mI ms-1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag0-functionalized Al-Si-O aerogel was 0.31 mI ms-1. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.

SELECTION OF CITATIONS
SEARCH DETAIL
...