Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 21(5): 605-612, 2021 05.
Article in English | MEDLINE | ID: mdl-33684326

ABSTRACT

Mars was habitable in its early history, but the consensus is that it is quite inhospitable today, in particular because its modern climate cannot support stable liquid water at the surface. Here, we report the presence of magmatic Fe/Mg clay minerals within the mesostasis of the martian meteorite NWA 5790, an unaltered 1.3 Ga nakhlite archetypal of the martian crust. These magmatic clay minerals exhibit a vesicular texture that forms a network of microcavities or pockets, which could serve as microreactors and allow molecular crowding, a necessary step for the emergence of life. Because their formation does not depend on climate, such niches for emerging life may have been generated on Mars at many periods throughout its history, regardless of the stability or availability of liquid water at the surface.


Subject(s)
Mars , Meteoroids , Clay , Extraterrestrial Environment , Minerals
2.
Sci Rep ; 9(1): 20251, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882914

ABSTRACT

Expanding our capabilities to unambiguously identify ancient traces of life in ancient rocks requires laboratory experiments to better constrain the evolution of biomolecules during advanced fossilization processes. Here, we submitted RNA to hydrothermal conditions in the presence of a gel of Al-smectite stoichiometry at 200 °C for 20 days. NMR and STXM-XANES investigations revealed that the organic fraction of the residues is no longer RNA, nor the quite homogeneous aromatic-rich residue obtained in the absence of clays, but rather consists of particles of various chemical composition including amide-rich compounds. Rather than the pure clays obtained in the absence of RNA, electron microscopy (SEM and TEM) and diffraction (XRD) data showed that the mineralogy of the experimental residues includes amorphous silica and aluminosilicates mixed together with nanoscales phosphates and clay minerals. In addition to the influence of clay minerals on the degradation of organic compounds, these results evidence the influence of the presence of organic compounds on the nature of the mineral assemblage, highlighting the importance of fine-scale mineralogical investigations when discussing the nature/origin of organo-mineral microstructures found in ancient rocks.

3.
Sci Rep ; 7: 43187, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28233805

ABSTRACT

Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.


Subject(s)
Aluminum Silicates/chemistry , Cesium Radioisotopes/analysis , Minerals/analysis , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Clay
SELECTION OF CITATIONS
SEARCH DETAIL
...