Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 64: 104879, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31806546

ABSTRACT

While aluminum alloys are widely used in industrial applications, their protection by anodization as surface treatment always requires a preparation step by alkaline or acid etching. In this paper, use of ultrasound during the acid etching step on the 2024 aluminum alloy was investigated. Etching rate, calculated as of weight loss, was measured under ultrasound irradiation, and compared to silent conditions. The etched surface was characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDS) and X-Ray Diffraction (XRD). Surface treatment was performed up to the final anodization step samples, and their final properties were evaluated as a function of various pre-treatments, including acid etching under ultrasound. The main evaluation concerned anticorrosion properties through electrochemical tests: polarization measurements and electrochemical impedance spectroscopy (EIS) in NaCl solution. Finally, use of ultrasound irradiation during acid preparation induced a beneficial effect on the corrosion performance of the anodic layer.

2.
Ultrason Sonochem ; 18(4): 895-900, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21190888

ABSTRACT

The present study is part of a global project which consists in the development of an automatic cleaning station for immersed boats (cockle, ninepin, etc.) in a self-service mode, associating an innovative ultrasonic device for cleaning with a specific water treatment. The originality of the process is that cleaning is performed by three transducers operating simultaneously at low frequency and moving along the surface, thanks to programmable logic controllers, and that it includes a suction to collect the dirt removed. Therefore, the time required for boat maintenance is shortened, ensuring high quality cleaning without the need for dry docks and avoiding additional pollution in the harbor areas. One of the key points was the evaluation of washing efficiency, as it is really hard to give a quantitative estimation of the dirt removed. To obtain the first design laws, feasibility tests have been carried out on dirty cockle samples and on real boat hulls with a laboratory ultrasonic device. The influence of a large number of parameters was tested such as transducer-probe distance, displacement speed and transmitted power. The obtained data allowed us to design an optimized cleaning device combining high efficiency and speed.

3.
Ultrason Sonochem ; 16(1): 88-96, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18583170

ABSTRACT

Sonoelectrochemical experiments differ from sonochemical ones by the introduction of electrodes in the sonicated reaction vessel. The aim of the study is to characterize the changes of the ultrasonic activity induced by the presence of an electrode located in front of the transducer. The scope of our investigations concerns two low frequencies vibration modes: 20 and 40 kHz. For this purpose, two laser visualization techniques have been used. The first part of the study, described in the present paper (part I), deals with the laser tomography technique which provides an accurate picture of the reactor actives zones, related to numerous cavitation events. For each frequency, two parameters were studied: the electrical power supplied to the transducer and the electrode transducer distance. At both frequencies, without electrode, we can observe distinct zones corresponding to cavitation production and stationary waves establishment. When increasing the input power, bubble clouds tend to form a unique cloud near the transducer. In presence of the electrode, bubble cavitation clouds are largely influenced by the obstacle. The second part of the paper (part II) will describe the Particle Image Velocimetry (P.I.V.) technique which allows to measure the velocity vector field in the fluid portion between the horn and the electrode.

4.
Ultrason Sonochem ; 16(1): 97-104, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18586547

ABSTRACT

Sonoelectrochemical experiments differ from sonochemical ones by the introduction of electrodes in the sonicated reaction vessel. The aim of the study is to characterize the changes in the ultrasonic activity induced by the presence of an electrode located in front of the transducer. The scope of our investigations concerns two low frequency vibration modes: 20 and 40 kHz. For this purpose, two laser visualization techniques have been used. The first part of the study, described in a previous paper (Part I), deals with the laser tomography technique which provides an accurate picture of the reactor active zones, related to numerous cavitation events. The second part of the paper (Part II) will describe the particle image velocimetry (PIV) technique used to measure the velocity vector field in the fluid portion between the horn and the electrode. As for the previous study, two parameters were studied: the electrical power supplied to the transducer and the electrode/transducer distance. The velocity vector fields show a main flow in the reactor axis. This flow seems to correspond to the conical cavitation bubbles structure which is observed on the laser tomography pictures. When an electrode is introduced into the reactor, two additional symmetric transversal flows can be quantified on both sides of the electrode.

5.
Ultrason Sonochem ; 11(3-4): 125-9, 2004 May.
Article in English | MEDLINE | ID: mdl-15081968

ABSTRACT

In this paper, active zones of an ultrasonic reactor are underlined by laser tomography and electrochemical measurements.

6.
Ultrason Sonochem ; 10(6): 357-62, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12927612

ABSTRACT

This paper is devoted to zinc corrosion and oxidation mechanism in an ultrasonically stirred aerated sodium sulfate electrolyte. It follows a previous study devoted to the influence of 20 kHz ultrasound upon zinc corrosion in NaOH electrolytes [Ultrason. Sonochemis. 8 (2001) 291]. In the present work, various ultrasound regimes were applied by changing the transmitted power and the wave frequency (20 and 40 kHz). Unlike NaOH electrolyte which turns the zinc electrode into a passive state, Na2SO4 saline media induces soft corrosion conditions. This allows a study of the combined effects of ultrasonically modified hydrodynamic and mechanical damage (cavitation) upon the zinc corrosion process. A series of initial experiments were carried out so as to determine the transmitted power and to characterize mass transfer distribution in the electrochemical cell. Zinc corrosion and oxidation process were subsequently studied with respect to the vibrating parameters. When exposed to a 20 kHz ultrasonic field, and provided that the electrode is situated at a maximum mass transfer point, the corrosion rate reaches values six to eight times greater than in silent conditions. The zinc oxidation reaction, in the absence of competitive reduction reactions, is also activated by ultrasound (20 and 40 kHz) but probably through a different process of surface activation.

7.
Ultrason Sonochem ; 10(6): 363-8, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12927613

ABSTRACT

This paper is devoted to the electroless plating of non-conductive substrates under ultrasound at 530 kHz. The ultrasonic irradiation is applied to the activation and to the plating steps. Effects are measured by following the final copper thickness obtained in 1 h of plating time, easily correlated to the average plating rate. It appears that ultrasound has a strong influence on the plating rates enhancement, and assumptions can be made that this increase could be linked to the catalyst cleaning. This is confirmed by XPS measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...