Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 18(10): 1060-1064, 2019 10.
Article in English | MEDLINE | ID: mdl-31427741

ABSTRACT

The interplay of superconductivity with non-trivial spin textures is promising for the engineering of non-Abelian Majorana quasiparticles. Spin-orbit coupling is crucial for the topological protection of Majorana modes as it forbids other trivial excitations at low energy but is typically intrinsic to the material1-7. Here, we show that coupling to a magnetic texture can induce both a strong spin-orbit coupling of 1.1 meV and a Zeeman effect in a carbon nanotube. Both of these features are revealed through oscillations of superconductivity-induced subgap states under a change in the magnetic texture. Furthermore, we find a robust zero-energy state-the hallmark of devices hosting localized Majorana modes-at zero magnetic field. Our findings are generalizable to any low-dimensional conductor, and future work could include microwave spectroscopy and braiding operations, which are at the heart of modern schemes for topological quantum computation.

2.
Phys Rev Lett ; 121(18): 183601, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30444407

ABSTRACT

We use the strong intrinsic nonlinearity of a microwave superconducting qubit with a 4 GHz transition frequency to directly detect and control the energy of a micromechanical oscillator vibrating at 25 MHz. The qubit and the oscillator are coupled electrostatically at a rate of approximately 2π×22 MHz. In this far off-resonant regime, the qubit frequency is shifted by 0.52 MHz per oscillator phonon, or about 14% of the 3.7 MHz qubit linewidth. The qubit behaves as a vibrational energy detector and from its line shape we extract the phonon number distribution of the oscillator. We manipulate this distribution by driving number state sensitive sideband transitions and creating profoundly nonthermal states. Finally, by driving the lower frequency sideband transition, we cool the oscillator and increase its ground state population up to 0.48±0.13, close to a factor of 8 above its value at thermal equilibrium. These results demonstrate a new class of electromechanics experiments that are a promising strategy for quantum nondemolition measurements and nonclassical state preparation.

3.
Nature ; 545(7652): 71-74, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28405018

ABSTRACT

The ability to control electronic states at the nanoscale has contributed to our modern understanding of condensed matter. In particular, quantum dot circuits represent model systems for the study of strong electronic correlations, epitomized by the Kondo effect. We use circuit quantum electrodynamics architectures to study the internal degrees of freedom of this many-body phenomenon. Specifically, we couple a quantum dot to a high-quality-factor microwave cavity to measure with exceptional sensitivity the dot's electronic compressibility, that is, its ability to accommodate charges. Because electronic compressibility corresponds solely to the charge response of the electronic system, it is not equivalent to the conductance, which generally involves other degrees of freedom such as spin. Here, by performing dual conductance and compressibility measurements in the Kondo regime, we uncover directly the charge dynamics of this peculiar mechanism of electron transfer. The Kondo resonance, visible in transport measurements, is found to be 'transparent' to microwave photons trapped in the high-quality cavity, thereby revealing that (in such a many-body resonance) finite conduction is achieved from a charge frozen by Coulomb interaction. This freezing of charge dynamics is in contrast to the physics of a free electron gas. We anticipate that the tools of cavity quantum electrodynamics could be used in other types of mesoscopic circuits with many-body correlations, providing a model system in which to perform quantum simulation of fermion-boson problems.

4.
Nat Commun ; 7: 10451, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26816050

ABSTRACT

Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.

5.
Science ; 349(6246): 408-11, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26206930

ABSTRACT

Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate, and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the megahertz range at the single-spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60 nanoseconds. We thereby demonstrate a mesoscopic device suitable for nondestructive spin readout and distant spin coupling.

6.
Nat Commun ; 4: 1400, 2013.
Article in English | MEDLINE | ID: mdl-23360991

ABSTRACT

Engineering the interaction between light and matter is an important goal in the emerging field of quantum opto-electronics. Thanks to the use of cavity quantum electrodynamics architectures, one can envision a fully hybrid multiplexing of quantum conductors. Here we use such an architecture to couple two quantum dot circuits. Our quantum dots are separated by 200 times their own size, with no direct tunnel and electrostatic couplings between them. We demonstrate their interaction, mediated by the cavity photons. This could be used to scale up quantum bit architectures based on quantum dot circuits or simulate on-chip phonon-mediated interactions between strongly correlated electrons.

7.
Phys Rev Lett ; 107(25): 256804, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22243102

ABSTRACT

We demonstrate a hybrid architecture consisting of a quantum dot circuit coupled to a single mode of the electromagnetic field. We use single wall carbon nanotube based circuits inserted in superconducting microwave cavities. By probing the nanotube dot using a dispersive readout in the Coulomb blockade and the Kondo regime, we determine an electron-photon coupling strength which should enable circuit QED experiments with more complex quantum dot circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...