Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Nutr ; 8(1): 277-288, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35024465

ABSTRACT

Three hundred thirty-six Ross 308 male broiler chicks were used in a 21-d study to explore performance and gut function when treated with a proton pump inhibitor (PPI; 0 or 89 mg/kg) in a 2 × 2 factorial arrangement with a xylanase (Xyl; 0 or 0.1 g/kg) to determine if the beneficial activity of arabinoxylan (AX) depolymerisation, through arabinoxylo-oligosaccharides (AXOS) production, starts in the upper gastrointestinal tract. Treatment with the PPI started from d 14, and by d 21 animal performance had deteriorated (P < 0.001). An interaction was observed between PPI and Xyl for feed conversion ratio (FCR) (P < 0.05), whereby the combination reduced the negative effect of PPI on FCR. Application of PPI raised digesta pH in the gizzard and caecum (P < 0.05), increased protein concentrations in the lower gut (P < 0.05) and reduced intake of digestible nutrients (P < 0.05). Caecal concentrations of indole, p-cresol, ammonia and the ratio of total volatile fatty acid (VFA) to butyric acid were increased with PPI (P < 0.05), indicating enhanced protein fermentation. Xylanase activity in the digesta were greatest in the caeca, especially when Xyl was supplemented (P < 0.001). The concentration of total soluble AX was greater in the gizzard and ileal digesta with Xyl supplementation (P < 0.05), supporting the depolymerisation action of xylanase even under acidic conditions. These data suggest xylanase may function in the gizzard even though pH is not optimal for activity and emphasises the importance of chlorohydric acid secretions in ensuring overall optimum gut function. AX depolymerisation benefits animal performance although it is still unknown how the AXOS produced with xylanase supplementation in the upper gastrointestinal tract influence the microbial populations and overall gut functionality.

2.
Front Vet Sci ; 7: 437, 2020.
Article in English | MEDLINE | ID: mdl-32851020

ABSTRACT

Tall oil fatty acids (TOFA) are novel, health-improving feed ingredients which have been shown to improve the performance of broiler chickens. TOFA contains resin acids, the suggested key components for its beneficial effects. For product safety, possible accumulation of TOFA components in tissues consumed by end-users is an issue of major importance. Wheat-soy-based diets with an indigestible marker and TOFA at 0, 750 and 3,000 g/t were fed to broiler chickens for 5 weeks; 11 replicate pens/treatment. Deposition of resin acids was assessed by analyzing jejunal tissue, breast muscle, abdominal fat, blood, liver, bile, and digesta along the intestinal tract at the end of the 35-day trial. Both free and conjugated resin acids were quantified. With TOFA 3,000 g/t diet, 30% of ingested resin acids could not be recovered from jejunal digesta. Also, a proportion representing 45% of resin acids fed were in conjugated form and thus had already re-entered the intestine from the bile duct. This means that at least 75% of resin acids ingested had become absorbed in, or proximal to jejunum. Recovery of resin acids in excreta was 45 and 70% when TOFA was fed at 750 and 3,000 g/t, respectively. Based on recovery data, of the estimated 1,087 mg of resin acids ingested by birds on the high TOFA dose during their lifetime, about 330 mg was unaccounted for. In analysis of jejunal tissue, blood, liver, bile, breast muscle, and abdominal tissue, <1 mg of resin acids was found after the 35-day trial when TOFA at the 4-fold the recommended dose was fed. It is likely that the host or microbiota mineralized or converted one-third of resin acids to a form that escaped analysis. TOFA at 3,000 g/t dose caused no detectable adverse effects in broiler chickens. Based on analysis of breast meat and liver, the common edible tissues, a human consumer would ingest <100 µg of resin acids in a single meal. That is one-thousandth of the dose shown to be harmless in rodents. Thus, unintentional exposure of human consumers to resin acids is marginal, and posed no safety concerns.

3.
Front Vet Sci ; 6: 311, 2019.
Article in English | MEDLINE | ID: mdl-31620454

ABSTRACT

In this paper we describe a study that evaluates the applicability of an in vitro fermentation model to assess the resistance of protein supplements to rumen degradation. The protein sources used were: soybean meal (SBM); whey protein (WHEY), which was expected to be rapidly degraded, and yeast-derived microbial protein (YMP), which was proposed to be resistant to rumen degradation. The basal diet was composed of grass silage and a commercial compound feed. The protein supplements were added at three isonitrogenous doses. Fermentation was monitored for 24 h and gas production, volatile fatty acids, lactic acid, and ammonia were analyzed at three timepoints. Protein degradation was estimated by determining the extent to which branched-chain amino acids (BCAA) introduced with the protein supplement were converted to corresponding branched-chain volatile fatty acids (BCVFA). At the highest dose of WHEY, 60% of introduced valine, leucine, and isoleucine was recovered as isobutyric, 2-methylbutyric, and isovaleric acid (products of BCAA decarboxylation and deamination), respectively. The BCVFA detected represented 50% of added BCAA with SBM, but <15% with YMP. Further indications that YMP protein is resistant to degradation were provided by analysis of ammonia. With YMP, the residual ammonia concentration only marginally exceeded that of the cultures with no protein supplementation, while it increased dose-dependently when the vessels were supplemented with WHEY or SBM. This suggests that with WHEY and SBM, the rate of deamination exceeded the rate of ammonia assimilation by bacteria. Residual ammonia and BCVFA, the two indicators of protein fermentation, were strongly correlated. Overall bacterial activity was monitored as yield of gas, volatile fatty acids, and bacteria. These three correlating parameters showed that WHEY only modestly stimulated fermentation, whereas SBM and YMP stimulated fermentation extensively, possibly owing to their higher carbohydrate content. The results presented suggest that the in vitro fermentation method was suitable for detecting differences in resistance of protein supplements to rumen degradation and following a full method validation could be a useful tool for diet formulation. The data obtained suggested that YMP was the most resistant and WHEY the most susceptible to degradation.

4.
Poult Sci ; 98(9): 3450-3463, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-30452717

ABSTRACT

It was hypothesized that dietary inclusion of Bacillus subtilis DSM 32315 could inhibit Clostridium perfringens induced necrotic enteritis (NE), thereby improving broiler performance. Male, d 0 chicks were randomly assigned 14 birds/pen, 11 pens/treatment in 3 treatments: a basal diet (control), a coccidiostat fed control (Narasin), and a direct fed microbial (DFM) B. subtilis DSM 32315 treatment. Necrotic enteritis was induced in all birds by oral inoculation of Eimeria maxima oocysts on d 12 and a virulent C. perfringens on d 16. Mortality was reduced (P < 0.001) in DFM and Narasin compared to control. DFM reduced (P < 0.001) feed conversion ratio (FCR) compared to control. Furthermore, DFM and Narasin reduced (P < 0.001) footpad lesions. The DFM was shown to increase (P < 0.05) Bacillus spp. and decrease (P < 0.05) C. perfringens in the ileum and cecum at several time points. To investigate microbiome changes in the cecum, digesta samples were analyzed with % guanine and cytosine (%G+C) microbial profiling which fractionates bacterial chromosomes based on the %G+C in DNA. The method revealed treatment profile peaks in low (27.0 to 34.5%), mid (40.5 to 54.0%), and high (59.0 to 68.0%) G+C fractions. 16S rRNA gene amplification and high throughput sequencing was conducted on each of these fractions in order to elucidate specific bacterial population differences. In the low and mid %G+C fractions, DFM had greater abundance of Lactobacillaceae family members (P = 0.03 and P = 0.01, respectively) and Lactobacillus salivarius (P = 0.04 and P = 0.01, respectively) than control or Narasin. Lactobacillus johnsonii was also greater in the low %G+C fraction compared to control and Narasin (P = 0.01). Lachnospiraceae (P = 0.04) and Ruminococcaceae (P < 0.01) in the mid %G+C fraction were reduced in the DFM compared to control. Positive alterations to the microbial populations in the gut of broilers may at least be a partial mechanism by which B. subtilis DSM 32315 reduced pathology and improved performance of broilers in the NE challenge.


Subject(s)
Bacillus subtilis/chemistry , Chickens , Diet/veterinary , Enteritis/veterinary , Gastrointestinal Microbiome/drug effects , Poultry Diseases/prevention & control , Animal Feed/analysis , Animals , Chickens/growth & development , Chickens/microbiology , Chickens/physiology , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Clostridium perfringens/physiology , Enteritis/microbiology , Enteritis/prevention & control , Male , Necrosis/microbiology , Necrosis/prevention & control , Necrosis/veterinary , Poultry Diseases/microbiology , Spores, Bacterial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...