Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Hum Vaccin Immunother ; 18(6): 2133914, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36315906

ABSTRACT

Persistence of an immunosuppression, affecting both the innate and adaptive arms of the immune system, plays a role in sepsis patients' morbidity and late mortality pointing to the need for broad and effective immune interventions. MVA-hIL-7-Fc is a non-replicative recombinant Modified Vaccinia virus Ankara encoding the human interleukin-7 fused to human IgG2 Fc fragment. We have shown in murine sepsis models the capacity of this new virotherapy to stimulate both arms of the immune system and increase survival. Herein, an exploratory study in nonhuman primates was performed following a single intravenous injection of the MVA-hIL-7-Fc used at the clinical dose to assess its safety and biological activities. Four cynomolgus macaques were followed for 3 weeks post-injection (p.i), without observed acute adverse reactions. Circulating hIL-7-Fc was detected during the first 3-5 days p.i with a detection peaking at 12 h p.i. IL-7 receptor engagement and downstream signal transduction were detected in T cells demonstrating functionality of the expressed IL-7. Expansion of blood lymphocytes, mainly CD4 and CD8 naïve and central memory T cells, was observed on day 7 p.i. together with a transient increase of Ki67 expression on T lymphocytes. In addition, we observed an increase in circulating B and NK cells as well as monocytes were albeit with different kinetics and levels. This study indicates that a vectorized IL-7-Fc, injected by intravenous route at a relevant clinical dose in a large animal model, is active without adverse reactions supporting the clinical development of this novel virotherapy for treatment of sepsis patients.


Subject(s)
Interleukin-7 , Vaccinia virus , Humans , Mice , Animals , Interleukin-7/genetics , Immunotherapy , Lymphocyte Count , Macaca fascicularis
2.
Cell Rep Med ; 2(1): 100185, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33521699

ABSTRACT

BCG vaccination can strengthen protection against pathogens through the induction of epigenetic and metabolic reprogramming of innate immune cells, a process called trained immunity. We and others recently demonstrated that mucosal or intravenous BCG better protects rhesus macaques from Mycobacterium tuberculosis infection and TB disease than standard intradermal vaccination, correlating with local adaptive immune signatures. In line with prior mouse data, here, we show in rhesus macaques that intravenous BCG enhances innate cytokine production associated with changes in H3K27 acetylation typical of trained immunity. Alternative delivery of BCG does not alter the cytokine production of unfractionated bronchial lavage cells. However, mucosal but not intradermal vaccination, either with BCG or the M. tuberculosis-derived candidate MTBVAC, enhances innate cytokine production by blood- and bone marrow-derived monocytes associated with metabolic rewiring, typical of trained immunity. These results provide support to strategies for improving TB vaccination and, more broadly, modulating innate immunity via mucosal surfaces.


Subject(s)
BCG Vaccine/administration & dosage , Immunity, Mucosal , Mycobacterium tuberculosis/immunology , Respiratory Mucosa/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis, Pulmonary/prevention & control , Acetylation , Administration, Intranasal , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/microbiology , Cellular Reprogramming/genetics , Cellular Reprogramming/immunology , Female , Gene Expression Regulation , Histones/genetics , Histones/immunology , Injections, Intravenous , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lung/drug effects , Lung/immunology , Lung/microbiology , Macaca mulatta , Male , Monocytes/drug effects , Monocytes/immunology , Monocytes/microbiology , Mycobacterium tuberculosis/pathogenicity , Respiratory Mucosa/microbiology , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
3.
Cell Rep Med ; 2(1): 100187, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33521701

ABSTRACT

To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.


Subject(s)
BCG Vaccine/administration & dosage , Immunity, Mucosal , Mycobacterium tuberculosis/immunology , Respiratory Mucosa/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis, Pulmonary/prevention & control , Administration, Intranasal , Animals , Cellular Reprogramming/genetics , Cellular Reprogramming/immunology , Female , Gene Expression Regulation , Injections, Intradermal , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Lung/drug effects , Lung/immunology , Lung/microbiology , Macaca mulatta , Male , Monocytes/drug effects , Monocytes/immunology , Monocytes/microbiology , Mycobacterium tuberculosis/pathogenicity , Respiratory Mucosa/microbiology , Th1 Cells/immunology , Th1 Cells/microbiology , Th17 Cells/immunology , Th17 Cells/microbiology , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
4.
Animals (Basel) ; 11(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467761

ABSTRACT

Despite the possibilities of routine clinical measures and assays on readily accessible bio-samples, it is not always essential in animals to investigate the dynamics of disease longitudinally. In this regard, minimally invasive imaging methods provide powerful tools in preclinical research. They can contribute to the ethical principle of gathering as much relevant information per animal as possible. Besides, with an obvious parallel to clinical diagnostic practice, such imaging platforms are potent and valuable instruments leading to a more refined use of animals from a welfare perspective. Non-human primates comprise highly relevant species for preclinical research to enhance our understanding of disease mechanisms and/or the development of improved prophylactic or therapeutic regimen for various human diseases. In this paper, we describe parameters that critically affect the quality of integrated positron emission tomography and computed tomography (PET-CT) in non-human primates. Lessons learned are exemplified by results from imaging experimental infectious respiratory disease in macaques; specifically tuberculosis, influenza, and SARS-CoV-2 infection. We focus on the thorax and use of 18F-fluorodeoxyglucose as a PET tracer. Recommendations are provided to guide various stages of PET-CT-supported research in non-human primates, from animal selection, scan preparation, and operation, to processing and analysis of imaging data.

5.
NPJ Vaccines ; 5(1): 39, 2020.
Article in English | MEDLINE | ID: mdl-32435513

ABSTRACT

Tuberculosis (TB) still is the principal cause of death from infectious disease and improved vaccination strategies are required to reduce the disease burden and break TB transmission. Here, we investigated different routes of administration of vectored subunit vaccines based on chimpanzee-derived adenovirus serotype-3 (ChAd3) for homologous prime-boosting and modified vaccinia virus Ankara (MVA) for heterologous boosting with both vaccine vectors expressing the same antigens from Mycobacterium tuberculosis (Ag85B, ESAT6, Rv2626, Rv1733, RpfD). Prime-boost strategies were evaluated for immunogenicity and protective efficacy in highly susceptible rhesus macaques. A fully parenteral administration regimen was compared to exclusive respiratory mucosal administration, while parenteral ChAd3-5Ag prime-boosting and mucosal MVA-5Ag boosting were applied as a push-and-pull strategy from the periphery to the lung. Immune analyses corroborated compartmentalized responses induced by parenteral versus mucosal vaccination. Despite eliciting TB-specific immune responses, none of the investigational regimes conferred a protective effect by standard readouts of TB compared to non-vaccinated controls, while lack of protection by BCG underpinned the stringency of this non-human primate test modality. Yet, TB manifestation after full parenteral vaccination was significantly less compared to exclusive mucosal vaccination.

6.
Front Immunol ; 10: 2479, 2019.
Article in English | MEDLINE | ID: mdl-31736945

ABSTRACT

While tuberculosis continues to afflict mankind, the immunological mechanisms underlying TB disease development are still incompletely understood. Advanced preclinical models for TB research include both rhesus and cynomolgus macaques (Macaca mulatta and Macaca fascicularis, respectively), with rhesus typically being more susceptible to acute progressive TB disease than cynomolgus macaques. To determine which immune mechanisms are responsible for this dissimilar disease development, we profiled a broad range of innate and adaptive responses, both local and peripheral, following experimental pulmonary Mycobacterium tuberculosis (Mtb) infection of both species. While T-cell and antibody responses appeared indistinguishable, we identified anti-inflammatory skewing of peripheral monocytes in rhesus and a more prominent local pro-inflammatory cytokine release profile in cynomolgus macaques associated with divergent TB disease outcome. Importantly, these differences were detectable both before and early after infection. This work shows that inflammatory and innate immune status prior to and at early stages after infection, critically affects outcome of TB infection.


Subject(s)
Macaca fascicularis/immunology , Macaca mulatta/immunology , Mycobacterium tuberculosis , Tuberculosis, Pulmonary/immunology , Animals , Cytokines/immunology , Immunity, Innate , Lung/immunology , Lung/microbiology , Lung/pathology , Male , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
7.
Nat Med ; 25(2): 255-262, 2019 02.
Article in English | MEDLINE | ID: mdl-30664782

ABSTRACT

Tuberculosis (TB) remains the deadliest infectious disease1, and the widely used Bacillus Calmette-Guérin (BCG) vaccine fails to curb the epidemic. An improved vaccination strategy could provide a cost-effective intervention to break the transmission cycle and prevent antimicrobial resistance2,3. Limited knowledge of the host responses critically involved in protective immunity hampers the development of improved TB vaccination regimens. Therefore, assessment of new strategies in preclinical models to select the best candidate vaccines before clinical vaccine testing remains indispensable. We have previously established in rhesus macaques (Macaca mulatta) that pulmonary mucosal BCG delivery reduces TB disease where standard intradermal injection fails4,5. Here, we show that pulmonary BCG prevents infection by using a repeated limiting-dose Mycobacterium tuberculosis challenge model and identify polyfunctional T-helper type 17 (TH17) cells, interleukin-10 and immunoglobulin A as correlates of local protective immunity. These findings warrant further research into mucosal immunization strategies and their translation to clinical application to more effectively prevent the spread of TB.


Subject(s)
BCG Vaccine/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Animals , Bacterial Load , Dose-Response Relationship, Immunologic , Immunity, Humoral , Interferon-gamma/metabolism , Lung/immunology , Lung/microbiology , Lung/pathology , Macaca mulatta , Male , Mucous Membrane/immunology , Vaccination
8.
Arthritis Res Ther ; 19(1): 246, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29096669

ABSTRACT

BACKGROUND: Rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA) and anti-carbamylated protein (anti-CarP) antibodies are rheumatoid arthritis (RA)-associated autoantibodies. Besides their presence in human serum, anti-CarP antibodies have also been described in rodent models of arthritis, while ACPA are not consistently detectable. Data on these RA-associated autoantibodies in primates are not available. Therefore, we investigated the presence of RF, anti-CarP antibodies and ACPA in rhesus monkeys before and after collagen-induced arthritis immunizations. METHODS: In previous studies, arthritis was induced in groups of rhesus monkeys by immunisation with collagen following pre-treatment with placebo, abatacept or Roactemra. Previously collected serum was used to measure, autoantibodies by ELISA, detecting anti-CarP antibodies, RF-IgM and antibodies against CCP2, citrullinated myelin basic protein and citrullinated fibrinogen. RESULTS: Out of the three autoantibodies, only anti-CarP antibodies were detectable in resus monkeys with arthritis. RF-IgM and ACPA were undetectable and below the detection limit of the ELISA. The level of anti-CarP antibodies increases over time and, similar to in humans and mice, these autoantibodies were already detectable before clinical disease onset. Furthermore, preventive treatment with abatacept (CTLA4/IgG1-Fc fusion protein) inhibited the development of anti-CarP antibodies after immunization, while this was less evident for preventive Roactemra (anti-IL6-receptor) treatment. Moreover, disease progression was only reduced following abatacept treatment. CONCLUSION: Rhesus monkeys develop anti-CarP antibodies upon induction of collagen-induced arthritis, while we were unable to detect RF or ACPA. Also, the development of anti-CarP antibodies could be inhibited by preventive abatacept treatment.


Subject(s)
Arthritis, Experimental/immunology , Autoantibodies/immunology , Macaca mulatta/immunology , Proteins/immunology , Abatacept/pharmacology , Animals , Antirheumatic Agents/pharmacology , Arthritis, Experimental/prevention & control , Carbamates/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Male , Proteins/metabolism , Time Factors
9.
Methods Mol Biol ; 1559: 411-417, 2017.
Article in English | MEDLINE | ID: mdl-28063060

ABSTRACT

Animal models of rheumatoid arthritis are important in the elucidation of etiopathogenic mechanisms of the disease and for the development of promising new therapies. Species specificity of new biological compounds and their mode of action preclude safety and efficacy testing in rodent models of disease. Nonhuman primates (NHP) can fill this niche and provide the only relevant model. Over the last two decades models of collagen-induced arthritis (CIA) were developed in the rhesus monkey and the common marmoset. However, NHP are higher-order animals and complex sentient beings. So especially in models where pain is an intricate part of the disease, analgesia needs to be addressed because of ethical considerations. In our model, a morphine-based pain relief was used that does not interfere with the normal development of disease allowing us to evaluate important mechanistic aspects of the arthritis.


Subject(s)
Analgesics, Opioid , Arthritis, Experimental/complications , Buprenorphine , Pain Management/methods , Pain/prevention & control , Animals , Arthritis, Experimental/pathology , Arthritis, Experimental/physiopathology , Callithrix , Drug Administration Schedule , Macaca mulatta , Pain/complications , Pain/physiopathology , Pain Measurement/methods , Severity of Illness Index
10.
Hum Gene Ther Clin Dev ; 26(2): 103-12, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26086763

ABSTRACT

Preclinical studies to assess biodistribution, safety, and initial efficacy of ART-I02, an adeno-associated type 5 (rAAV5) vector expressing human interferon ß (hIFN-ß), were performed in a total of 24 rhesus monkeys with collagen-induced arthritis. All monkeys were naïve or showed limited neutralizing antibody (Nab) titers to AAV5 at the start of the study. Animals were injected with a single intra-articular dose of ART-I02 or placebo, consisting of 3.2×10(13) vg (Dose A=maximum feasible dose), 4.58×10(12) vg (Dose B), or placebo in the first affected finger joint, the ipsilateral knee, and ankle joint at the same time point. Animals were monitored for clinical parameters and well-being with a maximum of 4 weeks, with the option that the severity of arthritis could necessitate an earlier time point of sacrifice. No adverse events were noted after injection of ART-I02. No abnormalities were observed after histological evaluation of all organs. At both dose levels, immunohistochemical staining indicated expression of hIFN-ß. In animals injected with Dose A, we observed stabilization or a reduction in swelling in the finger joint in which vector was administered. The highest copy numbers of vector DNA were detected in synovial tissue of the injected joint and the draining lymph node of the injected knee. High titers of Nab to rAAV5 were observed at the end of the study. Five monkeys developed an rAAV5-specific T-cell response. Two monkeys developed Nab to hIFN-ß. In conclusion, intra-articular injection of ART-I02 was well-tolerated and did not induce adverse events. After administration of Dose A of ART-I02, we observed a beneficial effect on joint swelling, substantiated by decreased histological inflammation and bone erosion scores. A GMP vector for clinical application has been manufactured and is currently being tested in GLP rodent studies, with the aim to move forward to a clinical trial.


Subject(s)
Arthritis, Experimental/therapy , Dependovirus/genetics , Interferon-beta/genetics , Animals , Ankle Joint/pathology , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Female , Finger Joint/pathology , Genetic Therapy , Genetic Vectors , Humans , Injections, Intra-Articular , Interferon-beta/metabolism , Knee Joint/pathology , Macaca mulatta , Male , Tissue Distribution , Treatment Outcome
11.
Arthritis Res Ther ; 17: 135, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25994180

ABSTRACT

INTRODUCTION: The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody® with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. METHODS: ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. RESULTS: ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. CONCLUSIONS: ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA.


Subject(s)
Antibodies, Bispecific/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Single-Domain Antibodies/pharmacology , Animals , Arthritis, Rheumatoid/drug therapy , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Half-Life , Humans , Immunoglobulin Heavy Chains/immunology , Interleukin-6/immunology , Macaca fascicularis , Macaca mulatta , Serum Albumin/immunology
12.
Arthritis Res Ther ; 16(4): R143, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25005029

ABSTRACT

INTRODUCTION: Antibodies towards type II collagen (CII) are detected in patients with rheumatoid arthritis (RA) and in non-human primates and rodents with collagen induced arthritis (CIA). We have previously shown that antibodies specific for several CII-epitopes are pathogenic using monoclonal antibodies from arthritic mice, although the role of different anti-CII epitopes has not been investigated in detail in other species. We therefore performed an inter-species comparative study of the autoantibody response to CII in patients with RA versus monkeys and mice with CIA. METHODS: Analysis of the full epitope repertoire along the disease course of CIA was performed using a library of CII triple-helical peptides. The antibody responses to the major CII epitopes were analyzed in sera and synovial fluid from RA patients, and in sera from rhesus monkeys (Macaca mulatta), common marmosets (Callithrix jacchus) and mice. RESULTS: Many CII epitopes including the major C1, U1, and J1 were associated with established CIA and arginine residues played an important role in the anti-CII antibody interactions. The major epitopes were also recognized in RA patients, both in sera and even more pronounced in synovial fluid: 77% of the patients had antibodies to the U1 epitope. The anti-CII immune response was not restricted to the anti-citrulline protein antibodies (ACPA) positive RA group. CONCLUSION: CII conformational dependent antibody responses are common in RA and are likely to originate from rheumatoid joints but did not show a correlation with ACPA response. Importantly, the fine specificity of the anti-CII response is similar with CIA in monkeys and rodents where the recognized epitopes are conserved and have a major pathogenic role. Thus, anti-CII antibodies may both contribute to, as well as be the consequence of, local joint inflammation.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Collagen Type II/immunology , Epitopes, B-Lymphocyte/immunology , Adult , Aged , Aged, 80 and over , Animals , Antibody Formation/immunology , Autoantibodies/immunology , Autoantigens/immunology , Callithrix , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Middle Aged , Synovial Fluid/immunology , Young Adult
13.
Drug Discov Today ; 19(9): 1394-401, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24704460

ABSTRACT

The poor translational validity of autoimmune-mediated inflammatory disease (AIMID) models in inbred and specific pathogen-free (SPF) rodents underlies the high attrition of new treatments for the corresponding human disease. Experimental autoimmune encephalomyelitis (EAE) is a frequently used preclinical AIMID model. We discuss here how crucial information needed for the innovation of current preclinical models can be obtained from postclinical analysis of the nonhuman primate EAE model, highlighting the mechanistic reasons why some therapies fail and others succeed. These new insights can also help identify new targets for treatment.


Subject(s)
Autoimmune Diseases/physiopathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Animals , Drug Design , Humans , Primates , Rodentia , Species Specificity , Translational Research, Biomedical/methods
14.
Arthritis Res Ther ; 15(6): R207, 2013.
Article in English | MEDLINE | ID: mdl-24299175

ABSTRACT

INTRODUCTION: Targeting the CD20 antigen has been a successful therapeutic intervention in the treatment of rheumatoid arthritis (RA). However, in some patients with an inadequate response to anti-CD20 therapy, a persistence of CD20- plasmablasts is noted. The strong expression of CD319 on CD20- plasmablast and plasma cell populations in RA synovium led to the investigation of the potential of CD319 as a therapeutic target. METHODS: PDL241, a novel humanized IgG1 monoclonal antibody (mAb) to CD319, was generated and examined for its ability to inhibit immunoglobulin production from plasmablasts and plasma cells generated from peripheral blood mononuclear cells (PBMC) in the presence and absence of RA synovial fibroblasts (RA-SF). The in vivo activity of PDL241 was determined in a human PBMC transfer into NOD scid IL-2 gamma chain knockout (NSG) mouse model. Finally, the ability of PDL241 to ameliorate experimental arthritis was evaluated in a collagen-induced arthritis (CIA) model in rhesus monkeys. RESULTS: PDL241 bound to plasmablasts and plasma cells but not naïve B cells. Consistent with the binding profile, PDL241 inhibited the production of IgM from in vitro PBMC cultures by the depletion of CD319+ plasmablasts and plasma cells but not B cells. The activity of PDL241 was dependent on an intact Fc portion of the IgG1 and mediated predominantly by natural killer cells. Inhibition of IgM production was also observed in the human PBMC transfer to NSG mouse model. Treatment of rhesus monkeys in a CIA model with PDL241 led to a significant inhibition of anti-collagen IgG and IgM antibodies. A beneficial effect on joint related parameters, including bone remodeling, histopathology, and joint swelling was also observed. CONCLUSIONS: The activity of PDL241 in both in vitro and in vivo models highlights the potential of CD319 as a therapeutic target in RA.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibody Formation/drug effects , Arthritis, Rheumatoid/immunology , Plasma Cells/immunology , Receptors, Immunologic/immunology , Animals , Flow Cytometry , Heterografts , Humans , Immunoglobulins/biosynthesis , Immunohistochemistry , Macaca mulatta , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Signaling Lymphocytic Activation Molecule Family , Synovial Membrane/immunology , Synovial Membrane/metabolism
15.
Exp Anim ; 62(3): 159-71, 2013.
Article in English | MEDLINE | ID: mdl-23903050

ABSTRACT

The common marmoset (Callithrix jacchus) is a small-bodied Neotropical primate and a useful preclinical animal model for translational research into autoimmune-mediated inflammatory diseases (AIMID), such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The animal model for MS established in marmosets has proven their value for exploratory research into (etio) pathogenic mechanisms and for the evaluation of new therapies that cannot be tested in lower species because of their specificity for humans. Effective usage of the marmoset in preclinical immunological research has been hampered by the limited availability of blood for immunological studies and of reagents for profiling of cellular and humoral immune reactions. In this paper, we give a concise overview of the procedures and reagents that were developed over the years in our laboratory in marmoset models of the above-mentioned diseases.


Subject(s)
Animals, Laboratory , Arthritis, Rheumatoid , Autoimmunity , Callithrix , Disease Models, Animal , Encephalomyelitis , Multiple Sclerosis , Translational Research, Biomedical/methods , Animals , Arthritis, Rheumatoid/immunology , Cross-Linking Reagents , Encephalomyelitis/immunology , Female , Humans , Male , Multiple Sclerosis/immunology
16.
Inflamm Res ; 62(2): 181-94, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23064655

ABSTRACT

OBJECTIVES: Non-human primates are immunologically closely related to humans providing relevant models of inflammatory disorders often used to evaluate new immunomodulating therapies. The aim of the study was to compare inflammatory infiltrates of acute graft rejection (AR) and collagen-induced arthritis (CIA) to delayed-type hypersensitivity (DTH) reactions as the latter model may serve as a less invasive animal model. MATERIALS AND METHODS: Tissue samples of AR, CIA and DTH were obtained from rhesus monkeys used in several pre-clinical studies. The infiltrate composition was determined by immunohistochemical analysis. RESULTS: The infiltrates in AR consisted of T cells, macrophages and B cells. The presence of lymphoid structures in AR suggested ongoing intragraft immune activation. The synovia of CIA contained predominantly macrophages and few T cells. The DTH infiltrates were dominated by T cells when the challenged was ovalbumin (OVA) and by macrophages when the challenge was tetanus toxoid (TT). CONCLUSIONS: The histology of AR resembles aspects of DTH to OVA while that of CIA showed similarities of the DTH to TT. The DTH reaction could serve as a model to study immunomodulating drugs for acute rejection and the acute inflammatory phase of autoimmunity.


Subject(s)
Arthritis, Experimental/immunology , Graft Rejection/immunology , Hypersensitivity, Delayed/immunology , Animals , Antigens/immunology , Arthritis, Experimental/pathology , B-Lymphocytes/immunology , Cytokines/immunology , Dendritic Cells/immunology , Graft Rejection/pathology , Hypersensitivity, Delayed/pathology , Kidney Transplantation/adverse effects , Macaca mulatta , Macrophages/immunology , Ovalbumin/immunology , T-Lymphocytes/immunology , Tetanus Toxoid/immunology
17.
Expert Opin Drug Discov ; 7(4): 315-25, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22458503

ABSTRACT

INTRODUCTION: Despite the tremendous advances made in the treatment of rheumatoid arthritis (RA), there is still excess mortality observed in RA patients, which is mainly caused by cardiovascular disease (CVD). Altered lipid metabolism plays a major role in the etiology of CVD. A second common complication observed in RA patients is anemia. Both conditions are serious, reduce quality of life and are undertreated. AREAS COVERED: The authors postulate that there is a specific niche for nonhuman primate models of inflammatory arthritis to address these systemic complications that occur in RA. Furthermore, the authors postulate that these nonhuman primate models are a useful platform to unveil the mechanisms underlying dyslipidemia and anemia, which are responsible for the manifestation of these complications. EXPERT OPINION: The presence of currently untreated systemic complications of RA, such as dyslipidemia and anemia, provides interesting opportunities to include these in the preclinical evaluation of new therapies. In the selection of relevant models for the evaluation of new treatments for RA or the identification of new targets for therapy, we postulate that nonhuman primates should be considered as a valid preclinical model. Because of their closer immunological and physiological proximity to humans, these models in nonhuman primates can be valuable for studying disease-related aspects that cannot be addressed in rodent models.


Subject(s)
Anemia/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Cardiovascular Diseases/drug therapy , Drug Discovery/methods , Dyslipidemias/drug therapy , Anemia/etiology , Animals , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/complications , Arthritis, Rheumatoid/complications , Callithrix , Cardiovascular Diseases/etiology , Dyslipidemias/etiology , Humans , Macaca mulatta
18.
Transpl Immunol ; 25(2-3): 133-40, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21708251

ABSTRACT

MT204 is a humanized IgG1 antibody specific for interleukin-2 (IL-2) of human and rhesus monkey origin. It potently antagonizes IL-2 signaling in both CD25(+) and CD25(-) cells by a unique mode of action. MT204 can not only prevent soluble IL-2 from binding to the intermediate affinity IL-2 receptors but can also antagonize IL-2 that is already bound to the CD25 subunit of high affinity IL-2 receptors on the cell surface. As initial steps toward development of a therapeutic antibody, pharmacokinetics (PK) and tolerability of MT204, as well as efficacy were investigated in rhesus monkeys. MT204 was infused by single escalating (2, 10 and 50mg/kg) or repeat dose administrations (50mg/kg, 1 ×/week for 3 weeks). Over the course of the experiment, the animals were regularly observed for clinical adverse reaction and bled for laboratory investigations (PK, hematology, chemical chemistry and leukocyte subset analysis). For the efficacy study, six rhesus monkeys were grafted with MHC-mismatched rhesus skin and infused with MT204 (50mg/kg), on the day of transplantation and again on days 5 and 12 post grafting. Efficacy was determined by assessment of graft necrosis at different time-points. No obvious adverse effects were observed clinically after single infusion, or after three repeated infusions of 50mg/kg and no MT204-related toxic effects were revealed by hematology or clinical chemistry. In the efficacy study, MT204-treated animals showed a significant delay in graft rejection versus control animals (p=0.025 by Log-rank test). The characteristics of MT204, displaying linear pharmacokinetics, half-life in the range expected for a human IgG, benign safety profile and signs of efficacy, warrant further development of this antibody for therapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Graft Rejection/drug therapy , Graft Rejection/prevention & control , Immune Tolerance , Interleukin-2/antagonists & inhibitors , Skin Transplantation , Animals , Interleukin-2/immunology , Macaca mulatta , Transplantation, Homologous
19.
Arthritis Res Ther ; 12(5): R200, 2010.
Article in English | MEDLINE | ID: mdl-20977720

ABSTRACT

INTRODUCTION: There is an ever-increasing need for animal models to evaluate efficacy and safety of new therapeutics in the field of rheumatoid arthritis (RA). Particularly for the early preclinical evaluation of human-specific biologicals targeting the progressive phase of the disease, there is a need for relevant animal models. In response to this requirement we set out to develop a model of collagen-induced arthritis (CIA) in a small-sized nonhuman primate species (300 to 400 g at adult age); that is, the common marmoset (Callithrix jacchus). METHODS: Twenty-two animals divided into three experiments were immunized with collagen type II (CII) of either bovine or chicken origin with different immunization strategies. The animals were analyzed for clinical manifestation of arthritis, hematology and clinical chemistry, immunological responses against CII and histopathological features of the arthritis. RESULTS: Clinically manifest arthritis was observed in almost 100% (21 out of 22) of the animals. Fifty percent of the animals developed semi-acute CIA while the other 50% displayed a more chronic disease. Both cellular (CD3/CD4 and CD3/CD8) and humoral responses (IgM and IgG) against CII were involved in the development of the disease. Besides mild histopathological changes in bone and cartilage, severe inflammation in extraarticular tissues like periosteum and subcutaneous tissues was observed. CONCLUSIONS: This new model in marmosets more closely resembles chronic RA with respect to the chronic disease course and pathomorphological presentation than the more acute monophasic and destructive CIA model in macaques. This model can therefore fill a niche in preclinical testing of new human specific therapeutics.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Animals , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Biomarkers/analysis , Callithrix , Cell Separation , Chronic Disease , Female , Flow Cytometry , Immunoassay , Male
20.
Expert Opin Drug Discov ; 3(3): 299-310, 2008 Mar.
Article in English | MEDLINE | ID: mdl-23480265

ABSTRACT

BACKGROUND: The broad immunological gap between inbred SPF-raised strains of mice and rats and the diverse rheumatoid arthritis (RA) patient population limits the predictive value of the existing disease models for clinical success of new therapies, in particular for those using highly specific biologicals. OBJECTIVE: This review argues that because of their closer immunological and physiological proximity to patients, disease models in non-human primates (NHPs) may bridge this gap and help reduce the failure of many (± 80%) new therapies in clinical trials. In various research areas, NHPs are an accepted intermediate between disease models in rodents and the ultimate introduction for clinical use in patients. However, with the exception of transplantation, this is not the case for immune-mediated inflammatory disorders, such as RA, although useful preclinical models are being developed. METHOD: The validity and use of the rhesus monkey model of collagen-induced arthritis as a preclinical RA model is reviewed. The discussion comprises present genetic and immunological aspects, biomarkers, and an overview of published preclinical therapy evaluations. CONCLUSION: It is time to consider the use of NHPs with a greater evolutionary proximity to humans as models for preclinical evaluation of new human-specific drugs for arthritic disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...