Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mater Adv ; 3(6): 2800-2809, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35419520

ABSTRACT

Nominally undoped SrTiO3 single crystals were illuminated by UV light at 350 °C in oxidizing as well as reducing atmospheres. In N2/O2 atmospheres, UV irradiation enhances the conductivity of SrTiO3 by several orders of magnitude. In dry H2 atmosphere UV exposure leads to the opposite conductivity effect, i.e., above band gap energy illumination surprisingly lowers the conductivity. This is discussed in the framework of a defect chemical model. We show that a shift in defect concentrations due to UV-driven oxygen incorporation from the gas phase into the oxide is the main cause of the measured conductivity changes. A model is introduced to illustrate the thermodynamic and kinetic drivers of the processes under UV irradiation. Noteably, in reducing H2/H2O atmospheres, the incorporation of oxygen into the investigated oxide under UV light takes place via water splitting. Owing to the predominant electron conduction of SrTiO3 in equilibrium with H2, oxygen incorporation upon UV and thus an increase of the oxygen chemical potential leads to a decrease of the majority electronic charge carrier, here electrons, which lowers the conductivity under UV irradiation.

2.
Mater Adv ; 2(23): 7583-7619, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34913036

ABSTRACT

The interaction of light with solids has been of ever-growing interest for centuries, even more so since the quest for sustainable utilization and storage of solar energy became a major task for industry and research. With SrTiO3 being a model material for an extensive exploration of the defect chemistry of mixed conducting perovskite oxides, it has also been a vanguard in advancing the understanding of the interaction between light and the electronic and ionic structure of solids. In the course of these efforts, many phenomena occurring during or subsequent to the illumination of SrTiO3 have been investigated. Here, we give an overview of the numerous photoinduced effects in SrTiO3 and their inherent connection to electronic structure and defect chemistry. In more detail, advances in the fields of photoconductivity, photoluminescence, photovoltages, photochromism and photocatalysis are summarized and their underlying elemental processes are discussed. In light of recent research, this review also emphasizes the fundamental differences between illuminating SrTiO3 either at low temperatures (200 °C), where in addition to electronic processes, also photoionic interactions become relevant. A survey of the multitude of different processes shows that a profound and comprehensive understanding of the defect chemistry and its alteration under illumination is both vital to optimizing devices and to pushing the boundaries of research and advancing the fundamental understanding of solids.

3.
Nanoscale Adv ; 3(21): 6114-6127, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34765869

ABSTRACT

The interplay of structure, composition and electrical conductivity was investigated for Fe-doped SrTiO3 thin films prepared by pulsed laser deposition. Structural information was obtained by reciprocal space mapping while solution-based inductively-coupled plasma optical emission spectroscopy and positron annihilation lifetime spectroscopy were employed to reveal the cation composition and the predominant point defects of the thin films, respectively. A severe cation non-stoichiometry with Sr vacancies was found in films deposited from stoichiometric targets. The across plane electrical conductivity of such epitaxial films was studied in the temperature range of 250-720 °C by impedance spectroscopy. This revealed a pseudo-intrinsic electronic conductivity despite the substantial Fe acceptor doping, i.e. conductivities being several orders of magnitude lower than expected. Variation of PLD deposition parameters causes some changes of the cation stoichiometry, but the films still have conductivities much lower than expected. Targets with significant Sr excess (in the range of several percent) were employed to improve the cation stoichiometry in the films. The use of 7% Sr-excess targets resulted in near-stoichiometric films with conductivities close to the stoichiometric bulk counterpart. The measurements show that a fine-tuning of the film stoichiometry is required in order to obtain acceptor doped SrTiO3 thin films with bulk-like properties. One can conclude that, although reciprocal space maps give a first hint whether or not cation non-stoichiometry is present, conductivity measurements are more appropriate for assessing SrTiO3 film quality in terms of cation stoichiometry.

4.
Anal Chem ; 86(18): 9058-64, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25131684

ABSTRACT

Two pulsed thermoelectrically cooled mid-infrared distributed feedback quantum cascade lasers (QCLs) were used for the quasi-simultaneous in-line determination of NO and NO2 at the caloric power plant Dürnrohr (Austria). The QCL beams were combined using a bifurcated hollow fiber, sent through the flue tube (inside diameter: 5.5 m), reflected by a retro-reflector and recorded using a fast thermoelectrically cooled mercury-cadmium-telluride detector. The thermal chirp during 300 ns pulses was about 1.2 cm(-1) and allowed scanning of rotational vibrational doublets of the analytes. On the basis of the thermal chirp and the temporal resolution of data acquisition, a spectral resolution of approximately 0.02 cm(-1) was achieved. The recorded rotational vibrational absorption lines were centered at 1900 cm(-1) for NO and 1630 cm(-1) for NO2. Despite water content in the range of 152-235 g/m(3) and an average particle load of 15.8 mg/m(3) in the flue gas, in-line measurements were possible achieving limits of detection of 73 ppb for NO and 91 ppb for NO2 while optimizing for a single analyte. Quasi-simultaneous measurements resulted in limits of detection of 219 ppb for NO and 164 ppb for NO2, respectively. Influences of temperature and pressure on the data evaluation are discussed, and results are compared to an established reference method based on the extractive measurements presented.

SELECTION OF CITATIONS
SEARCH DETAIL