Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37425686

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disorder with limited therapeutic options. Insufficient understanding of driver mutations and poor fidelity of currently available animal models has limited the development of effective therapies. Since GATA1 deficient megakaryocytes sustain myelofibrosis, we hypothesized that they may also induce fibrosis in lungs. We discovered that lungs from IPF patients and Gata1low mice contain numerous GATA1negative immune-poised megakaryocytes that, in mice, have defective RNA-seq profiling and increased TGF-ß1, CXCL1 and P-selectin content. With age, Gata1low mice develop fibrosis in lungs. Development of lung fibrosis in this model is prevented by P-selectin deletion and rescued by P-selectin, TGF-ß1 or CXCL1 inhibition. Mechanistically, P-selectin inhibition decreases TGF-ß1 and CXCL1 content and increases GATA1positive megakaryocytes while TGF-ß1 or CXCL1 inhibition decreased CXCL1 only. In conclusion, Gata1low mice are a novel genetic-driven model for IPF and provide a link between abnormal immune-megakaryocytes and lung fibrosis.

2.
Nat Commun ; 12(1): 6790, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815405

ABSTRACT

Lineage commitment and differentiation is driven by the concerted action of master transcriptional regulators at their target chromatin sites. Multiple efforts have characterized the key transcription factors (TFs) that determine the various hematopoietic lineages. However, the temporal interactions between individual TFs and their chromatin targets during differentiation and how these interactions dictate lineage commitment remains poorly understood. Here we perform dense, daily, temporal profiling of chromatin accessibility (DNase I-seq) and gene expression changes (total RNA-seq) along ex vivo human erythropoiesis to comprehensively define developmentally regulated DNase I hypersensitive sites (DHSs) and transcripts. We link both distal DHSs to their target gene promoters and individual TFs to their target DHSs, revealing that the regulatory landscape is organized in distinct sequential regulatory modules that regulate lineage restriction and maturation. Finally, direct comparison of transcriptional dynamics (bulk and single-cell) and lineage potential between erythropoiesis and megakaryopoiesis uncovers differential fate commitment dynamics between the two lineages as they exit the stem and progenitor stage. Collectively, these data provide insights into the temporally regulated synergy of the cis- and the trans-regulatory components underlying hematopoietic lineage commitment and differentiation.


Subject(s)
Cell Lineage/genetics , Chromatin/genetics , Gene Expression Regulation, Developmental , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Cell Line , Chromatin/metabolism , Colony-Forming Units Assay , Deoxyribonuclease I/metabolism , Humans , Leukocytes, Mononuclear , Primary Cell Culture , Promoter Regions, Genetic , RNA-Seq , Single-Cell Analysis , Transcription Factors/metabolism
3.
Nature ; 584(7820): 244-251, 2020 08.
Article in English | MEDLINE | ID: mdl-32728217

ABSTRACT

DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA1-5 and contain genetic variations associated with diseases and phenotypic traits6-8. We created high-resolution maps of DHSs from 733 human biosamples encompassing 438 cell and tissue types and states, and integrated these to delineate and numerically index approximately 3.6 million DHSs within the human genome sequence, providing a common coordinate system for regulatory DNA. Here we show that these maps highly resolve the cis-regulatory compartment of the human genome, which encodes unexpectedly diverse cell- and tissue-selective regulatory programs at very high density. These programs can be captured comprehensively by a simple vocabulary that enables the assignment to each DHS of a regulatory barcode that encapsulates its tissue manifestations, and global annotation of protein-coding and non-coding RNA genes in a manner orthogonal to gene expression. Finally, we show that sharply resolved DHSs markedly enhance the genetic association and heritability signals of diseases and traits. Rather than being confined to a small number of distal elements or promoters, we find that genetic signals converge on congruently regulated sets of DHSs that decorate entire gene bodies. Together, our results create a universal, extensible coordinate system and vocabulary for human regulatory DNA marked by DHSs, and provide a new global perspective on the architecture of human gene regulation.


Subject(s)
Chromatin/genetics , DNA/metabolism , Deoxyribonuclease I/metabolism , Molecular Sequence Annotation , Chromatin/chemistry , Chromatin/metabolism , DNA/chemistry , DNA/genetics , Gene Expression Regulation , Genes/genetics , Genome, Human/genetics , Humans , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics
4.
Nature ; 583(7818): 729-736, 2020 07.
Article in English | MEDLINE | ID: mdl-32728250

ABSTRACT

Combinatorial binding of transcription factors to regulatory DNA underpins gene regulation in all organisms. Genetic variation in regulatory regions has been connected with diseases and diverse phenotypic traits1, but it remains challenging to distinguish variants that affect regulatory function2. Genomic DNase I footprinting enables the quantitative, nucleotide-resolution delineation of sites of transcription factor occupancy within native chromatin3-6. However, only a small fraction of such sites have been precisely resolved on the human genome sequence6. Here, to enable comprehensive mapping of transcription factor footprints, we produced high-density DNase I cleavage maps from 243 human cell and tissue types and states and integrated these data to delineate about 4.5 million compact genomic elements that encode transcription factor occupancy at nucleotide resolution. We map the fine-scale structure within about 1.6 million DNase I-hypersensitive sites and show that the overwhelming majority are populated by well-spaced sites of single transcription factor-DNA interaction. Cell-context-dependent cis-regulation is chiefly executed by wholesale modulation of accessibility at regulatory DNA rather than by differential transcription factor occupancy within accessible elements. We also show that the enrichment of genetic variants associated with diseases or phenotypic traits in regulatory regions1,7 is almost entirely attributable to variants within footprints, and that functional variants that affect transcription factor occupancy are nearly evenly partitioned between loss- and gain-of-function alleles. Unexpectedly, we find increased density of human genetic variation within transcription factor footprints, revealing an unappreciated driver of cis-regulatory evolution. Our results provide a framework for both global and nucleotide-precision analyses of gene regulatory mechanisms and functional genetic variation.


Subject(s)
DNA Footprinting/standards , Genome, Human/genetics , Transcription Factors/metabolism , Consensus Sequence , DNA/genetics , DNA/metabolism , Deoxyribonuclease I/metabolism , Genetics, Population , Genome-Wide Association Study , Humans , Models, Molecular , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid/genetics
5.
J Biol Res (Thessalon) ; 26: 4, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31360678

ABSTRACT

BACKGROUND: Hematopoiesis is a model-system for studying cellular development and differentiation. Phenotypic and functional characterization of hematopoietic progenitors has significantly aided our understanding of the mechanisms that govern fate choice, lineage specification and maturity. Methods for progenitor isolation have historically relied on complex flow-cytometric strategies based on nested, arbitrary gates within defined panels of immunophenotypic markers. The resulted populations are then functionally assessed, although functional homogeneity or absolute linkage between function and phenotype is not always achieved, thus distorting our view on progenitor biology. METHOD: In this study, we present a protocol for unbiased phenotypic identification and functional characterization which combines index sorting and clonogenic assessment of individual progenitor cells. Single-cells are plated into custom media allowing multiple hematopoietic fates to emerge and are allowed to give rise to unilineage colonies or mixed. After colony identification, lineage potential is assigned to each progenitor and finally the indexed phenotype of the initial cell is recalled and a phenotype is assigned to each functional output. CONCLUSIONS: Our approach overcomes the limitations of the current protocols expanding beyond the established cell-surface marker panels and abolishing the need for nested gating. Using this method we were able to resolve the relationships of myeloid progenitors according to the revised model of hematopoiesis, as well as identify a novel marker for erythroid progenitors. Finally, this protocol can be applied to the characterization of any progenitor cell with measurable function.

6.
Bioinformatics ; 35(22): 4767-4769, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31161210

ABSTRACT

SUMMARY: The Illumina Infinium EPIC BeadChip is a new high-throughput array for DNA methylation analysis, extending the earlier 450k array by over 400 000 new sites. Previously, a method named eFORGE was developed to provide insights into cell type-specific and cell-composition effects for 450k data. Here, we present a significantly updated and improved version of eFORGE that can analyze both EPIC and 450k array data. New features include analysis of chromatin states, transcription factor motifs and DNase I footprints, providing tools for epigenome-wide association study interpretation and epigenome editing. AVAILABILITY AND IMPLEMENTATION: eFORGE v2.0 is implemented as a web tool available from https://eforge.altiusinstitute.org and https://eforge-tf.altiusinstitute.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Methylation , Epigenomics , Chromatin , CpG Islands , Deoxyribonuclease I , Oligonucleotide Array Sequence Analysis , Software
7.
EBioMedicine ; 41: 427-442, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30827930

ABSTRACT

BACKGROUND: Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS: We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS: Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION: Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.


Subject(s)
Endogenous Retroviruses/genetics , Epigenomics , Basic Helix-Loop-Helix Transcription Factors/genetics , Binding Sites , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cytochrome Reductases/genetics , Endogenous Retroviruses/physiology , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Oxidoreductases Acting on Sulfur Group Donors , Phosphoric Diester Hydrolases/genetics , Promoter Regions, Genetic , Proteins/genetics , Pyrophosphatases/genetics , RNA, Long Noncoding , Survival Rate , Terminal Repeat Sequences/genetics , Ubiquitin-Conjugating Enzymes/genetics
8.
J Am Soc Nephrol ; 30(3): 421-441, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30760496

ABSTRACT

BACKGROUND: Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS: We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS: We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS: We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.

9.
Nat Methods ; 13(3): 213-21, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26914205

ABSTRACT

The advent of DNA footprinting with DNase I more than 35 years ago enabled the systematic analysis of protein-DNA interactions, and the technique has been instrumental in the decoding of cis-regulatory elements and the identification and characterization of transcription factors and other DNA-binding proteins. The ability to analyze millions of individual genomic cleavage events via massively parallel sequencing has enabled in vivo DNase I footprinting on a genomic scale, offering the potential for global analysis of transcription factor occupancy in a single experiment. Genomic footprinting has opened unique vistas on the organization, function and evolution of regulatory DNA; however, the technology is still nascent. Here we discuss both prospects and challenges of genomic footprinting, as well as considerations for its application to complex genomes.


Subject(s)
Algorithms , Chromosome Mapping/methods , DNA Footprinting/methods , DNA/genetics , Genome, Human/genetics , High-Throughput Nucleotide Sequencing/methods , Humans
11.
Genome Biol Evol ; 7(11): 3155-69, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26507798

ABSTRACT

In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif ( TG: A(C)/GT CA: N), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (G CA: GC TG: C), the NF-1 motif (GG CATG: CC), and the GR (glucocorticoid receptor) motif (G-A CATG: T-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution.


Subject(s)
Biological Evolution , DNA Methylation , Dinucleoside Phosphates/genetics , Transcription Factors/genetics , 5-Methylcytosine/chemistry , Animals , Binding Sites , Cytosine/chemistry , Humans , Mice , Oligonucleotide Array Sequence Analysis , Protein Binding , Transcription Factors/chemistry
12.
Nat Genet ; 47(12): 1393-401, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26502339

ABSTRACT

The function of human regulatory regions depends exquisitely on their local genomic environment and on cellular context, complicating experimental analysis of common disease- and trait-associated variants that localize within regulatory DNA. We use allelically resolved genomic DNase I footprinting data encompassing 166 individuals and 114 cell types to identify >60,000 common variants that directly influence transcription factor occupancy and regulatory DNA accessibility in vivo. The unprecedented scale of these data enables systematic analysis of the impact of sequence variation on transcription factor occupancy in vivo. We leverage this analysis to develop accurate models of variation affecting the recognition sites for diverse transcription factors and apply these models to discriminate nearly 500,000 common regulatory variants likely to affect transcription factor occupancy across the human genome. The approach and results provide a new foundation for the analysis and interpretation of noncoding variation in complete human genomes and for systems-level investigation of disease-associated variants.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation , Genetic Variation/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Regulatory Elements, Transcriptional/genetics , Transcription Factors/metabolism , Genome, Human , Genomics/methods , Humans , Phenotype , Protein Binding , Transcription Factors/genetics
13.
Nat Methods ; 12(10): 927-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26322838

ABSTRACT

Regulatory regions harbor multiple transcription factor (TF) recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe an approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.


Subject(s)
Carrier Proteins/genetics , DNA Footprinting/methods , Genomics/methods , Nuclear Proteins/genetics , Regulatory Sequences, Nucleic Acid , Base Sequence , Binding Sites , DNA Breaks, Double-Stranded , DNA Repair , Enhancer Elements, Genetic , Erythrocytes/physiology , Erythropoiesis , Genome, Human , Humans , Mutation , Repressor Proteins , Transcription Factors/metabolism
14.
Article in English | MEDLINE | ID: mdl-25972927

ABSTRACT

BACKGROUND: The brain, spinal cord, and neural retina comprise the central nervous system (CNS) of vertebrates. Understanding the regulatory mechanisms that underlie the enormous cell-type diversity of the CNS is a significant challenge. Whole-genome mapping of DNase I-hypersensitive sites (DHSs) has been used to identify cis-regulatory elements in many tissues. We have applied this approach to the mouse CNS, including developing and mature neural retina, whole brain, and two well-characterized brain regions, the cerebellum and the cerebral cortex. RESULTS: For the various regions and developmental stages of the CNS that we analyzed, there were approximately the same number of DHSs; however, there were many DHSs unique to each CNS region and developmental stage. Many of the DHSs are likely to mark enhancers that are specific to the specific CNS region and developmental stage. We validated the DNase I mapping approach for identification of CNS enhancers using the existing VISTA Browser database and with in vivo and in vitro electroporation of the retina. Analysis of transcription factor consensus sites within the DHSs shows distinct region-specific profiles of transcriptional regulators particular to each region. Clustering developmentally dynamic DHSs in the retina revealed enrichment of developmental stage-specific transcriptional regulators. Additionally, we found reporter gene activity in the retina driven from several previously uncharacterized regulatory elements surrounding the neurodevelopmental gene Otx2. Identification of DHSs shared between mouse and human showed region-specific differences in the evolution of cis-regulatory elements. CONCLUSIONS: Overall, our results demonstrate the potential of genome-wide DNase I mapping to cis-regulatory questions regarding the regional diversity within the CNS. These data represent an extensive catalogue of potential cis-regulatory elements within the CNS that display region and temporal specificity, as well as a set of DHSs common to CNS tissues. Further examination of evolutionary conservation of DHSs between CNS regions and different species may reveal important cis-regulatory elements in the evolution of the mammalian CNS.

15.
Cell ; 161(3): 541-554, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25910208

ABSTRACT

Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.


Subject(s)
RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Alternative Splicing , Enhancer Elements, Genetic , Exons , HeLa Cells , Humans , Promoter Regions, Genetic , RNA, Antisense/genetics , Sequence Analysis, RNA/methods , Transcription Factors/metabolism , Transcription, Genetic
16.
Nature ; 515(7527): 365-70, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409825

ABSTRACT

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Mammals/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , DNA Footprinting , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Humans , Mice
17.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409824

ABSTRACT

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Subject(s)
Genome/genetics , Genomics , Mice/genetics , Molecular Sequence Annotation , Animals , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
18.
Science ; 346(6212): 1007-12, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25411453

ABSTRACT

To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.


Subject(s)
Conserved Sequence , DNA/genetics , Evolution, Molecular , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Deoxyribonuclease I , Genome, Human , Humans , Mice , Restriction Mapping
19.
Nat Methods ; 11(1): 66-72, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24185839

ABSTRACT

It is currently not possible to resolve the genome-wide relationship of transcription factors (TFs) and nucleosomes at the level of individual chromatin templates despite rapidly increasing data on TF and nucleosome occupancy in the human genome. Here we describe DNase I-released fragment-length analysis of hypersensitivity (DNase-FLASH), an approach that directly couples mapping of TF occupancy, via quantification of DNA microfragments released from individual TF recognition sites in regulatory DNA, to the surrounding nucleosome architecture, via analysis of larger DNA fragments, in a single assay. DNase-FLASH enables coupling of individual TF footprints to nucleosome occupancy, identifying TFs that precisely demarcate the regulatory DNA-nucleosome interface.


Subject(s)
Deoxyribonuclease I/chemistry , Nucleosomes/chemistry , Transcription Factors/chemistry , Binding Sites , Chromatin/chemistry , Computational Biology/methods , DNA/analysis , DNA/chemistry , Deoxyribonuclease I/metabolism , Epigenesis, Genetic , Epigenomics , Fibroblasts/metabolism , Genome, Human , Gingiva/metabolism , Humans , Nucleosomes/metabolism , Promoter Regions, Genetic , Protein Binding
20.
Science ; 342(6155): 253-7, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24115442

ABSTRACT

Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the ß-hemoglobinopathies.


Subject(s)
Carrier Proteins/genetics , Enhancer Elements, Genetic , Erythroid Cells/metabolism , Fetal Hemoglobin/biosynthesis , Gene Expression Regulation , Hemoglobinopathies/genetics , Nuclear Proteins/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Chromosome Mapping , Fetal Hemoglobin/genetics , Gene Targeting , Genetic Engineering , Genetic Variation , Genome-Wide Association Study , Hemoglobinopathies/therapy , Humans , Mice , Precursor Cells, B-Lymphoid/metabolism , Repressor Proteins , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...