Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2585: 97-103, 2023.
Article in English | MEDLINE | ID: mdl-36331768

ABSTRACT

Ex vivo slice cultures of the brain tissue can maintain the cytoarchitecture of the central nervous system (CNS), which allows a thorough understanding of the functions of multiple interconnected cells in a culture system that closely resembles the in vivo environment. Additionally, slice cultures of the brain tissue are advantageous in tracking complex connectivity between neurons and glia both under normal and pathologic conditions, which is not possible in in vitro cell lines. Here, we describe the method of preparing ex vivo slice culture from the mouse cerebellum and the protocol of studying the effects of West Nile virus infection on cerebellar cells.


Subject(s)
West Nile Fever , West Nile virus , Animals , Mice , Organ Culture Techniques , Brain/pathology , Neurons/physiology , Cerebellum
2.
Front Med (Lausanne) ; 7: 164, 2020.
Article in English | MEDLINE | ID: mdl-32426358

ABSTRACT

Background: West Nile virus (WNV) causes a spectrum of human disease ranging from a febrile illness (WNV fever) to severe neuroinvasive disease (meningitis, encephalitis, acute flaccid paralysis). Since WNV gained entry into North America in 1999, clinicians caring for WNV survivors have observed persistent neurological symptoms occurring long-after the production of neutralizing antibodies and clearance of the virus. Accordingly, alternative pathogeneses other than direct viral invasion have been hypothesized to explain these post-infectious symptoms. The dominant hypothesis is that antiviral inflammatory responses triggered initially to clear WNV may persist to promote a post-infectious proinflammatory state. Methods: In 4 serologically-confirmed WNV patients with persistent post-infectious symptoms (3 WNV fever, 1 neuroinvasive disease), we ordered a comprehensive cytokine panel at weeks 8, 10, 12, and 36 months post-onset of illness, respectively, to better understand the pathophysiology of the protracted symptoms. Results: All patients had abnormally elevated tumor necrosis factor alpha (TNF-α), a major molecule triggering antiviral cytokines and chronic inflammation in many human autoimmune diseases, but heretofore not reported to be upregulated in human WNV infection. Three patients also had elevations of other proinflammatory proteins. Major symptoms included fatigue, arthralgias, myalgias, generalized or multifocal pain or weakness, imbalance, headaches, cognitive problems, and symptoms of dysautonomia. Conclusion: The findings provide support for an extended post-infectious proinflammatory state that may contribute to chronic inflammation and long-term morbidity in some WNV survivors and further suggest that TNF-α may play a pathogenic role in initiating this inflammatory environment. Clinical trials may be warranted to determine if TNF-α inhibitors or other immunosuppressive agents can improve patient outcomes.

3.
Pathogens ; 8(4)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623175

ABSTRACT

West Nile virus (WNV) is the most common mosquito-borne virus in North America. WNV-associated neuroinvasive disease affects all ages, although elderly and immunocompromised individuals are particularly at risk. WNV neuroinvasive disease has killed over 2300 Americans since WNV entered into the United States in the New York City outbreak of 1999. Despite 20 years of intensive laboratory and clinical research, there are still no approved vaccines or antivirals available for human use. However, rapid progress has been made in both understanding the pathogenesis of WNV and treatment in clinical practices. This review summarizes our current understanding of WNV infection in terms of human clinical manifestations, host immune responses, neuroinvasion, and therapeutic interventions.

4.
Neurohospitalist ; 9(3): 160-164, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31244973

ABSTRACT

Following acute West Nile virus (WNV) infection in humans, there is upregulation of pro-inflammatory molecules that promote neuroinflammation, including S100 calcium binding protein B (S100B), high-mobility group box-1 (HMGB1), and osteopontin (OPN). The effects of S100B and HMGB1 are transduced by the receptor for advanced glycation end products (RAGE). Interestingly, the same immunoregulatory proteins that fuel neuroinflammation can also promote tumorigenesis. We present 2 cases of glial neuronal tumors, a glioblastoma multiforme and dysembryoplastic neuroepithelial tumor, in patients with severe West Nile neuroinvasive disease (WNND). In these cases, the viral infection was a precursor to the development of the aggressive brain tumors. We describe a potential mechanism where the presence of tumorigenic proteins in the microenvironment induced by WNV, and subsequent RAGE and OPN signaling, may contribute to development or aggressive growth of these tumors. Although it is certainly possible that the occurrence of primary brain tumors following WNND is coincidental, the ability of WNV to alter cellular signaling and increase expression of pro-inflammatory and tumorigenic molecules merits further investigations to determine whether there is an association between these disease processes or implications for brain tumor patients who develop WNV infection.

5.
Ther Deliv ; 10(4): 251-263, 2019 04.
Article in English | MEDLINE | ID: mdl-30991923

ABSTRACT

Therapeutic strategies for traumatic injuries in the central nervous system (CNS) are largely limited to the efficiency of drug delivery. Despite the disrupted blood-CNS barrier during the early phase after injury, the drug administration faces a variety of obstacles derived from homeostatic imbalance at the injury site. In the late phase after CNS injury, the restoration of the blood-CNS barrier integrity varies depending on the injury severity resulting in inconsistent delivery of therapeutics. This review intends to characterize those different challenges of the therapeutic delivery in acute and chronic phases after injury and discuss recent advances in various approaches to explore novel strategies for the treatment of traumatic CNS injury.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Drug Delivery Systems , Spinal Cord Injuries/drug therapy , Acute Disease , Animals , Blood-Brain Barrier/metabolism , Brain Injuries, Traumatic/physiopathology , Chronic Disease , Humans , Spinal Cord Injuries/physiopathology , Tissue Distribution , Trauma Severity Indices
6.
Brain Sci ; 9(1)2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30586874

ABSTRACT

West Nile virus (WNV) infection results in a spectrum of neurological symptoms, ranging from a benign fever to severe WNV neuroinvasive disease with high mortality. Many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. While neurons are a main target of WNV, other cell types, especially astrocytes, play an important role in promoting WNV-mediated central nervous system (CNS) damage. Conversely, it has been shown that cultured primary astrocytes secrete high levels of interferons (IFNs) immediately after WNV exposure to protect neighboring astrocytes, as well as neurons. However, how intrinsic responses to WNV in specific cell types and different regions of the brain modify immune protection is not fully understood. Here, we used a mouse ex vivo spinal cord slice culture (SCSC) and cerebellar slice culture (CSC) models to determine the innate immune responses specific to the CNS during WNV infection. Slices were prepared from the spinal cord and cerebellar tissue of 7⁻9-day-old mouse pups. Four-day-old SCSC or CSC were infected with 1 × 10³ or 1 × 105 PFU of WNV, respectively. After 12 h exposure to WNV and 3 days post-infection in normal growth media, the pooled slice cultures were processed for total RNA extraction and for gene expression patterns using mouse Affymetrix arrays. The expression patterns of a number of genes were significantly altered between the mock- and WNV-treated groups, both in the CSCs and SCSCs. However, distinct differences were observed when CSC data were compared with SCSC. CSCs showed robust induction of interferons (IFNs), IFN-stimulated genes (ISGs), and regulatory factors. Some of the antiviral genes related to IFN were upregulated more than 25-fold in CSCs as compared to mock or SCSC. Though SCSCs had twice the number of dysregulated genes, as compared CSCs, they exhibited a much subdued IFN response. In addition, SCSCs showed astrogliosis and upregulation of astrocytic marker genes. In sum, our results suggest that early anti-inflammatory response to WNV infection in CSCs may be due to large population of distinct astrocytic cell types, and lack of those specialized astrocytes in SCSC may make spinal cord cells more susceptible to WNV damage. Further, the understanding of early intrinsic immune response events in WNV-infected ex vivo culture models could help develop potential therapies against WNV.

7.
Front Microbiol ; 9: 2028, 2018.
Article in English | MEDLINE | ID: mdl-30210488

ABSTRACT

A small percentage of babies born to Zika virus (ZIKV)-infected mothers manifest severe defects at birth, including microcephaly. Among those who appeared healthy at birth, there are increasing reports of postnatal growth or developmental defects. However, the impact of congenital ZIKV infection in postnatal development is poorly understood. Here, we report that a mild congenital ZIKV-infection in pups born to immunocompetent pregnant mice did not display apparent defects at birth, but manifested postnatal growth impediments and neurobehavioral deficits, which include reduced locomotor and cognitive deficits that persisted into adulthood. We found that the brains of these pups were smaller, had a thinner cortical layer 1, displayed increased astrogliosis, decreased expression of microcephaly- and neuron development- related genes, and increased pathology as compared to mock-infected controls. In summary, our results showed that even a mild congenital ZIKV infection in immunocompetent mice could lead to postnatal deficits, providing definitive experimental evidence for a necessity to closely monitor postnatal growth and development of presumably healthy human infants, whose mothers were exposed to ZIKV infection during pregnancy.

8.
Drug Des Devel Ther ; 10: 2803-2813, 2016.
Article in English | MEDLINE | ID: mdl-27660412

ABSTRACT

Bypassing the blood-brain barrier is one of the primary considerations when designing compounds intended to function in the central nervous system (CNS). Intranasal (IN) administration of otherwise blood-brain barrier impermeable molecules can result in high CNS concentrations and low systemic accumulation, indicating that IN administration may be a useful method of delivering therapeutics to the CNS. Elastin-like polypeptide (ELP) is a large, non-immunogenic, highly manipulable biopolymer with extensive evidence supporting its use as a carrier with the ability to improve drug pharmacokinetics and drug targeting. The ability of ELP to reach the CNS via IN administration has been shown previously. Previous studies have also identified the ability of cell penetrating peptides (CPPs) to increase the uptake of molecules in some instances, including via the IN route. Here, we compared and contrasted the biodistribution of ELPs with or without addition of the CPPs Tat or SynB1 via both the IN and intravenous routes. Administration of ELP via the IN route led to significant accumulation in the brain, especially in the olfactory bulbs. When injected intravenously, <3% of the ELP signal was present outside the vascular compartment. This contrasted with IN administration, which resulted in 79% of the fluorescence signal localized outside the vascular space. The fusion of Tat or SynB1 significantly altered the biodistribution of ELP, decreasing the total CNS accumulation following IN administration. The addition of CPPs to ELP increased their retention in the nasal epithelium. These results suggest ELP may represent an effective CNS delivery vector without further modification and that the addition of a CPP significantly influences biodistribution.

9.
Ther Deliv ; 6(7): 841-53, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26228775

ABSTRACT

Therapeutic peptides represent a largely untapped resource in medicine today, especially in the central nervous system. Despite their ease of design and remarkably high target specificity, it is difficult to deliver them beyond the blood-brain barrier or into the required intracellular compartments. In addition, the instability of these peptides in vivo precludes their use to combat the symptoms of numerous neurological disorders including Alzheimer's disease and spinocerebellar ataxia. In this review, we aim to characterize recent advances in the delivery of therapeutic peptides to the central nervous system past the blood-brain barrier and discuss the advantages and disadvantages of the examined methods as well as explore new potential directions.


Subject(s)
Blood-Brain Barrier/metabolism , Cell-Penetrating Peptides/metabolism , Central Nervous System Agents/administration & dosage , Drug Carriers , Excipients/chemistry , Peptides/administration & dosage , Animals , Biological Transport , Cell-Penetrating Peptides/chemistry , Central Nervous System Agents/chemistry , Central Nervous System Agents/metabolism , Chemistry, Pharmaceutical , Drug Administration Routes , Drug Stability , Humans , Nanoparticles , Peptides/chemistry , Peptides/metabolism , Permeability , Protein Stability , Solubility , Technology, Pharmaceutical/methods
10.
J Neurochem ; 131(1): 101-14, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24903464

ABSTRACT

Spinocerebellar ataxia-1 (SCA1) is a neurodegenerative disease that primarily targets Purkinje cells (PCs) of the cerebellum. The exact mechanism of PC degeneration is unknown, however, it is widely believed that mutant ataxin-1 becomes toxic because of the phosphorylation of its serine 776 (S776) residue by cAMP-dependent protein kinase A (PKA). Therefore, to directly modulate mutant ATXN1 S776 phosphorylation and aggregation, we designed a therapeutic polypeptide to inhibit PKA. This polypeptide comprised of a thermally responsive elastin-like peptide (ELP) carrier, which increases peptide half-life, a PKA inhibitory peptide (PKI), and a cell-penetrating peptide (Synb1). We observed that our therapeutic polypeptide, Synb1-ELP-PKI, inhibited PKA activity at concentrations similar to the PKI peptide. Additionally, Synb1-ELP-PKI significantly suppressed mutant ATXN1 S776 phosphorylation and intranuclear inclusion formation in cell culture. Further, Synb1-ELP-PKI treatment improved SCA1 PC morphology in cerebellar slice cultures. Furthermore, the Synb1-ELP peptide carrier crossed the blood-brain barrier and localized to the cerebellum via the i.p. or intranasal route. Here, we show the intranasal delivery of ELP-based peptides to the brain as a novel delivery strategy. We also demonstrate that our therapeutic polypeptide has a great potential to target the neurotoxic S776 phosphorylation pathway in the SCA1 disease.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Drug Delivery Systems/methods , Drug Design , Protein Kinase Inhibitors/administration & dosage , Spinocerebellar Ataxias/drug therapy , Administration, Intranasal , Amino Acid Sequence , Animals , Cerebellum/drug effects , Cerebellum/enzymology , Cerebellum/pathology , Cyclic AMP-Dependent Protein Kinases/metabolism , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Organ Culture Techniques , Peptides/administration & dosage , Peptides/genetics , Spinocerebellar Ataxias/enzymology , Spinocerebellar Ataxias/pathology , Treatment Outcome
11.
Cerebellum ; 13(5): 596-606, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24930030

ABSTRACT

Spinocerebellar ataxia 1 (SCA1) results from pathologic glutamine expansion in the ataxin-1 protein (ATXN1). This misfolded ATXN1 causes severe Purkinje cell (PC) loss and cerebellar ataxia in both humans and mice with the SCA1 disease. The molecular chaperone heat-shock proteins (HSPs) are known to modulate polyglutamine protein aggregation and are neuroprotective. Since HSPs are induced under stress, we explored the effects of focused laser light induced hyperthermia (HT) on HSP-mediated protection against ATXN1 toxicity. We first tested the effects of HT in a cell culture model and found that HT induced Hsp70 and increased its localization to nuclear inclusions in HeLa cells expressing GFP-ATXN1[82Q]. HT treatment decreased ATXN1 aggregation by making GFP-ATXN1[82Q] inclusions smaller and more numerous compared to non-treated cells. Further, we tested our HT approach in vivo using a transgenic (Tg) mouse model of SCA1. We found that our laser method increased cerebellar temperature from 38 to 40 °C without causing any neuronal damage or inflammatory response. Interestingly, mild cerebellar HT stimulated the production of Hsp70 to a significant level. Furthermore, multiple exposure of focused cerebellar laser light induced HT to heterozygous SCA1 transgenic (Tg) mice significantly suppressed the SCA1 phenotype as compared to sham-treated control animals. Moreover, in treated SCA1 Tg mice, the levels of PC calcium signaling/buffering protein calbindin-D28k markedly increased followed by a reduction in PC neurodegenerative morphology. Taken together, our data suggest that laser light induced HT is a novel non-invasive approach to treat SCA1 and maybe other polyglutamine disorders.


Subject(s)
Hyperthermia, Induced/methods , Laser Therapy/methods , Spinocerebellar Ataxias/physiopathology , Spinocerebellar Ataxias/therapy , Animals , Ataxin-1 , Ataxins , Cell Nucleus/metabolism , Cerebellum/pathology , Cerebellum/physiopathology , Disease Models, Animal , HSP70 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Immunohistochemistry , Mice, Transgenic , Motor Activity/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroimmunomodulation/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Spinocerebellar Ataxias/pathology , Temperature , Treatment Outcome , Vacuoles/pathology , Vacuoles/physiology
12.
Cerebellum ; 13(4): 479-90, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24788087

ABSTRACT

The mutated ataxin-1 protein in spinocerebellar ataxia 1 (SCA1) targets Purkinje cells (PCs) of the cerebellum and causes progressive ataxia due to loss of PCs and neurons of the brainstem. The exact mechanism of this cellular loss is still not clear. Currently, there are no treatments for SCA1; however, understanding of the mechanisms that regulate SCA1 pathology is essential for devising new therapies for SCA1 patients. We previously established a connection between the loss of intracellular calcium-buffering and calcium-signalling proteins with initiation of neurodegeneration in SCA1 transgenic (Tg) mice. Recently, acid-sensing ion channel 1a (ASIC1a) have been implicated in calcium-mediated toxicity in many brain disorders. Here, we report generating SCA1 Tg mice in the ASIC1a knockout (KO) background and demonstrate that the deletion of ASIC1a gene expression causes suppression of the SCA1 disease phenotype. Loss of the ASIC1a channel in SCA1/ASIC1a KO mice resulted in the improvement of motor deficit and decreased PC degeneration. Interestingly, the expression of the ASIC1 variant, ASIC1b, was upregulated in the cerebellum of both SCA1/ASIC1a KO and ASIC1a KO animals as compared to the wild-type (WT) and SCA1 Tg mice. Further, these SCA1/ASIC1a KO mice exhibited translocation of PC calcium-binding protein calbindin-D28k from the nucleus to the cytosol in young animals, which otherwise have both cytosolic and nuclear localization. Furthermore, in addition to higher expression of calcium-buffering protein parvalbumin, PCs of the older SCA1/ASIC1a KO mice showed a decrease in morphologic abnormalities as compared to the age-matched SCA1 animals. Our data suggest that ASIC1a may be a mediator of SCA1 pathogenesis and targeting ASIC1a could be a novel approach to treat SCA1.


Subject(s)
Acid Sensing Ion Channels/deficiency , Gene Expression Regulation/genetics , Spinocerebellar Ataxias/genetics , Acid Sensing Ion Channels/genetics , Animals , Calbindin 1/genetics , Calbindin 1/metabolism , Cerebellum/pathology , Disease Models, Animal , Mice , Mice, Transgenic , Motor Activity/physiology , Movement Disorders/etiology , Movement Disorders/genetics , Parvalbumins/genetics , Parvalbumins/metabolism , Phenotype , Purkinje Cells/metabolism , Purkinje Cells/pathology , Rotarod Performance Test , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/pathology , Time Factors
13.
Cerebellum ; 11(3): 718-32, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22076800

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a polyglutamine tract in the mutant protein ataxin-1. The cerebellar Purkinje cells (PCs) are the major targets of mutant ataxin-1. The mechanism of PC death in SCA1 is not known; however, previous work indicates that downregulation of specific proteins involved in calcium homeostasis and signaling by mutant ataxin-1 is the probable cause of PC degeneration in SCA1. In this study, we explored if targeted deprivation of PC specific calcium-binding protein calbindin-D28k (CaB) exacerbates ataxin-1 mediated toxicity in SCA1 transgenic (Tg) mice. Using behavioral tests, we found that though both SCA1/+ and SCA1/+: CaB null (-/+) double mutants exhibited progressive impaired performance on the rotating rod, a simultaneous enhancement of exploratory activity, and absence of deficits in coordination, the double mutants were more severely impaired than SCA1/+ mice. With increasing age, SCA1/+ mice showed a progressive loss in the expression and localization of CaB and other PC specific calcium-binding and signaling proteins. In double mutants, these changes were more pronounced and had an earlier onset. Gene expression profiling of young mice exhibiting no behavior or biochemical deficits revealed a differential expression of many genes common to SCA1/+ and CaB-/+ lines, and unique to SCA1/+: CaB-/+ phenotype. Our study provides further evidence for a critical role of CaB in SCA1 pathogenesis, which may help identify new therapeutic targets to treat SCA1 or other cerebellar ataxias.


Subject(s)
S100 Calcium Binding Protein G/biosynthesis , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Animals , Ataxin-1 , Ataxins , Behavior, Animal/physiology , Blotting, Western , Calbindin 1 , Calbindins , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cytosol/metabolism , DNA Footprinting , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Mutation/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Parvalbumins/metabolism , Phenotype , Polymerase Chain Reaction , Postural Balance/physiology , Psychomotor Performance/physiology , S100 Calcium Binding Protein G/genetics
14.
Cerebellum ; 10(2): 254-66, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21384195

ABSTRACT

Non-cell autonomous involvement of glial cells in the pathogenesis of polyglutamine diseases is gaining recognition in the ataxia field. We previously demonstrated that Purkinje cells (PCs) in polyglutamine disease spinocerebellar ataxia-1 (SCA1) contain cytoplasmic vacuoles rich in Bergmann glial protein S100B. The vacuolar formation in SCA1 PCs is accompanied with an abnormal morphology of dendritic spines. In addition, S100B messenger RNA (mRNA) expression levels are significantly high in the cerebella of asymptomatic SCA1 transgenic (Tg) mice and increase further with age when compared with the age-matched wild-type animals. This higher S100B mRNA expression positively correlates with an increase in the number of vacuoles. To further characterize the function of S100B in SCA1 pathology, we explored the effects of S100B protein on GFP-ataxin-1 (ATXN1) with expanded polyglutamines [82Q] in HEK stable cell line. Externally added S100B protein to these cells induced S100B-positive vacuoles similar to those seen in SCA1 PCs in vivo. Further, we found that both externally added and internally expressed S100B significantly reduced GFP-ATXN1[82Q] inclusion body formation. In contrast, the addition of S100B inhibitory peptide TRTK12 reversed S100B-mediated effects. Interestingly, in SCA1 Tg mice, PCs containing S100B vacuoles also showed the lack of nuclear inclusions, whereas PCs without vacuoles contained nuclear inclusions. Additionally, TRTK12 treatment reduced abnormal dendritic growth and morphology of PCs in cerebellar slice cultures prepared from SCA1 Tg mice. Moreover, intranasal administration of TRTK12 to SCA1 Tg mice reduced cerebellar S100B levels in the particulate fractions, and these mice displayed a significant improvement in their performance deficit on the Rotarod test. Taken together, our results suggest that glial S100B may augment degenerative changes in SCA1 PCs by modulating mutant ataxin-1 toxicity/solubility through an unknown signaling pathway.


Subject(s)
Nerve Growth Factors/metabolism , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Nuclear Proteins/metabolism , Oligopeptides/pharmacology , Purkinje Cells/metabolism , S100 Proteins/metabolism , Spinocerebellar Ataxias/metabolism , Animals , Ataxin-1 , Ataxins , Blotting, Western , CapZ Actin Capping Protein , Cell Proliferation/drug effects , Disease Models, Animal , Fluorescent Antibody Technique , HEK293 Cells , Humans , Immunoprecipitation , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Mice , Mice, Transgenic , Mutation , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Peptide Fragments , Purkinje Cells/drug effects , Purkinje Cells/pathology , Reverse Transcriptase Polymerase Chain Reaction , S100 Calcium Binding Protein beta Subunit , Spinocerebellar Ataxias/pathology , Vacuoles/metabolism , Vacuoles/pathology
15.
Indian J Exp Biol ; 48(7): 737-43, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20929057

ABSTRACT

Inositol 1,4,5-trisphosphatee (IP3), an intracellular messenger, releases Ca2+ from microsomes. Ca2+ plays a major role in regulating various cellular events like neural transmission and regulation of hormones and growth factors. Aluminum (Al), lead (Pb) and mercury (Hg) were reported to alter Ca(2+)-regulated events thereby causing neurotoxicity. Hence, an attempt was made characterize IP3 mediated Ca2+ release from rat brain microsomes under the influence of Al, Pb and Hg. Different concentrations of metals were tested over a designated time scale and their effects on IP3 mediated Ca2+ release from microsomes were monitored using Fura-2 technique. All the three metals inhibited IP3 mediated Ca2+ release, Pb being more potent. The order of potency of these three metals was Pb>Hg>Al. Except for Al, both Hg and Pb independently released Ca2+ from microsomes. Re-uptake of Ca2+ into microsomes was inhibited by all the three metals, Pb being more potent. Microsomal Ca(2+)-ATPase activity was also inhibited by all the three metals. These results suggest that neurotoxicity exerted by Al, Pb and Hg may be due to the interference of these metals with IP3 mediated calcium release and also interfering with the microsomal Ca2+ sequestration mechanism. Differential effects of heavy metal induced changes in Ca2+ flux can be used as an index of relative toxicity.


Subject(s)
Brain/drug effects , Brain/metabolism , Calcium Channels/drug effects , Calcium/metabolism , Metals, Heavy/toxicity , Microsomes/drug effects , Microsomes/metabolism , Animals , Calcium-Transporting ATPases/metabolism , Fura-2/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Male , Rats , Rats, Sprague-Dawley
16.
J Neurochem ; 114(3): 706-16, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20477910

ABSTRACT

Spinocerebellar ataxia 1 (SCA1) is a dominantly inherited neurodegenerative disease associated with progressive ataxia resulting from the loss of cerebellar Purkinje cells (PCs) and neurons in the brainstem. In PCs of SCA1 transgenic mice, the disease causing ataxin-1 protein mediates the formation of S100B containing cytoplasmic vacuoles and further self-aggregates to form intranuclear inclusions. The exact function of the ataxin-1 protein is not fully understood. However, the aggregation and neurotoxicity of the mutant ataxin-1 protein is dependent on the phosphorylation at serine 776 (S776). Although protein kinase A (PKA) has been implicated as the S776 kinase, the mechanism of PKA/ataxin-1 regulation in SCA1 is still not clear. We propose that a dopamine D(2) receptor (D2R)/S100B pathway may be involved in modulating PKA activity in PCs. Using a D2R/S100B HEK stable cell line transiently transfected with GFP-ataxin-1[82Q], we demonstrate that stimulation of the D2R/S100B pathway caused a reduction in mutant ataxin-1 S776 phosphorylation and ataxin-1 aggregation. Activation of PKA by forskolin resulted in an enhanced S776 phosphorylation and increased ataxin-1 nuclear aggregation, which was suppressed by treatment with D2R agonist bromocriptine and PKA inhibitor H89. Furthermore, treating SCA1 transgenic PC slice cultures with forskolin induced neurodegenerative morphological abnormalities in PC dendrites consistent with those observed in vivo. Taken together our data support a mechanism where PKA dependent mutant ataxin-1 phosphorylation and aggregation can be regulated by D2R/S100B signaling.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptors, Dopamine D2/physiology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Animals , Ataxin-1 , Ataxins , Cell Line , Cells, Cultured , Dopamine/metabolism , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Mice , Mice, Transgenic , Mutation/genetics , Nerve Growth Factors/physiology , Nerve Tissue Proteins/physiology , Nerve Tissue Proteins/toxicity , Nuclear Proteins/physiology , Nuclear Proteins/toxicity , Organ Culture Techniques , Phosphorylation/genetics , S100 Calcium Binding Protein beta Subunit , S100 Proteins/physiology , Spinocerebellar Ataxias/physiopathology
17.
Cerebellum ; 8(3): 231-44, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19593677

ABSTRACT

Spinocerebellar ataxia-1 (SCA1) is a late onset neurodegenerative disease caused by the expansion of a polyglutamine repeat within ataxin-1 protein. The toxic effects triggered by mutant ataxin-1 result in degeneration of the neurons in cerebellum, brain stem and spinocerebellar tracts. The targeted overexpression of mutant ataxin-1 in cerebellar Purkinje cells (PCs) of the SCA1 transgenic mice results in the formation of cytoplasmic vacuoles in PCs. These vacuoles appear early on before the onset of behavioral abnormalities. Interestingly, we found that vacoules contain S100B and vimentin proteins, which normally localize to neighboring Bergmann glia (BG). Further, immunohistochemical and specialized silver stain analysis revealed that vacuolar formation is associated with alterations in the morphology of dendritic spines of PCs. To gain insights into the mechanisms of vacuolar formation, we investigated if vacuoles in SCA1 PCs have an autophagic origin or are a consequence of some other event. We examined the expression levels (by Western blotting) of microtubule-associated protein light chain 3 (LC3)-I and LC3-II, and the degradation levels of p62 (a LC3 partner) in the cerebellar fractions prepared from pre-symptomatic SCA1 and age-matched wild-type mice. No p62 degradation was observed; however, LC3-II/(LC3-I + LC3-II) ratios were significantly altered in SCA1 mice indicating changes in the autophagic flux. In addition, LC3 localized to PC vacuoles. Further, we observed a co-localization of myo-inositol monophosphatase 1 (IMPA1) with S100B in PC vacuoles. IMPA1 is present in PC spines and has been implicated in autophagy. In vitro studies using purified IMPA1 and S100B demonstrated that S100B interacted with and activated IMPA1. Both apo and Ca(2+)-bound S100B were found to activate IMPA1, depending on substrate concentration. IMPA1 is regulated by another calcium-binding protein calbindin-D28k (CaB), since we reported earlier that the CaB levels are reduced in SCA1 PCs, the activation of IMPA1 by S100B may modulate CaB-dependent inositol signaling. This may cause BG-PC interface to degenerate resulting in vacuolar formation. In sum, these data indicate that vacuoles appearing early in SCA1 PCs could be developing through some unknown autophagic mechanism.


Subject(s)
Antigens, Ly/genetics , Cerebellum/pathology , Cytoplasmic Vesicles/metabolism , Membrane Proteins/genetics , Nerve Growth Factors/metabolism , Neuroglia/enzymology , Phosphoric Monoester Hydrolases/metabolism , S100 Proteins/metabolism , Animals , Calbindin 1 , Calbindins , Cells, Cultured , Enzyme Activation/genetics , Gene Expression Regulation, Enzymologic/genetics , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Transgenic , Purkinje Cells , S100 Calcium Binding Protein G/metabolism , S100 Calcium Binding Protein beta Subunit , Time Factors , Vimentin/metabolism
18.
Biosci Hypotheses ; 2(3): 148-150, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-20046986

ABSTRACT

Neurodegenerative trinucleotide (CAG) repeat disorders are caused by the expansion of polyglutamine tracts within the disease proteins. Some of these proteins have an unknown function. How does expanded polyglutamine cause target neurons to degenerate, is not clear. Recent evidence suggests that intercellular miscommunication may contribute to polyglutamine pathogenesis in CAG repeat disorders. Polyglutamine induced degeneration of the target neuron can be mediated via glia-neuron interactions. Here we hypothesize during neurodegenerative process the failure of cell: cell interactions have more severe consequences than alterations in intracellular neuron biology. We further believe that bidirectional communication between neurons and glia are prerequisite for the normal development and function of either cell-type. Understanding intercellular signaling mechanisms such as glial trophic factors and their receptors, cell adhesion or other well-defined signaling molecules provide opportunities for developing potential therapies.

19.
Am Surg ; 73(6): 561-7; discussion 567-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17658092

ABSTRACT

Incisional hernias represent one of the most common complications of laparotomies. Previous investigations have suggested that a disorder in collagen fiber structure and production level may be an important pathologic cause of abdominal wall hernias. We hypothesized that a cross-examination of multiple extracellular matrix biomarkers might identify underlying defects contributing to the development of hernias. We examined two patient populations: patients with incisional hernias (presenting for hernia repair) and patients with no hernia after previous laparotomy (undergoing a second laparotomy). Patients with previous wound infections, open abdomens, or on steroids were excluded. Fascia samples were obtained from all patients at the time of their second operation and they were studied. Western blots and reverse transcriptase-polymerase chain reaction were used to determine the ratio of type I, III, and IV collagens, as well as matrix metalloproteinase 1 (MMP1) and MMP2 in both groups. Values of P < 0.05 were considered statistically significant. At the protein level, collagen I/III ratio was slightly decreased in patients with incisional hernias compared with those with no hernia, whereas it was significantly decreased at the mRNA transcript level (0.49 vs 1.03, P < 0.01, respectively). The MMP-1 mRNA transcripts were not different in incisional hernia (IH) versus nonincisional hernia, but the MMP-2 level was significantly increased in patients with IH. Reduced collagen I/III and MMP-1/MMP-2 ratios in IH might be consequence of the biological activities between key elements participating in the development of IH after laparotomies. The potential role of MMP-2-specific inhibitors in preventing IH is of significance for future studies.


Subject(s)
Collagen/analysis , Hernia, Abdominal/etiology , Laparotomy/adverse effects , Matrix Metalloproteinases/analysis , Biomarkers/analysis , Blotting, Western , Collagen Type I/analysis , Collagen Type III/analysis , Collagen Type IV/analysis , Electrophoresis, Polyacrylamide Gel , Extracellular Matrix/chemistry , Fascia/pathology , Female , Hernia, Abdominal/pathology , Humans , Male , Matrix Metalloproteinase 1/analysis , Matrix Metalloproteinase 2/analysis , Middle Aged , RNA, Messenger/analysis , Reoperation , Reverse Transcriptase Polymerase Chain Reaction
20.
J Neurol Sci Turk ; 23(3): 166-174, 2006.
Article in English | MEDLINE | ID: mdl-18176630

ABSTRACT

Spinocerebellar ataxia-1 (SCA1) is caused by the expansion of a polyglutamine repeat within the disease protein, ataxin-1. The overexpression of mutant ataxin-1 in SCA1 transgenic mice results in the formation of cytoplasmic vacuoles in Purkinje neurons (PKN) of the cerebellum. PKN are closely associated with neighboring Bergmann glia. To elucidate the role of Bergmann glia in SCA1 pathogenesis, cerebellar tissue from 7 days to 6 wks old SCA1 transgenic and wildtype mice were used. We observed that Bergmann glial S100B protein is localized to the cytoplasmic vacuoles in SCA1 PKN. These S100B positive cytoplasmic vacuoles began appearing much before the onset of behavioral abnormalities, and were negative for other glial and PKN marker proteins. Electron micrographs revealed that vacuoles have a double membrane. In the vacuoles, S100B colocalized with receptors of advanced glycation end-products (RAGE), and S100B co-immunoprecipated with cerebellar RAGE. In SCA1 PKN cultures, exogenous S100B protein interacted with the PKN membranes and was internalized. These data suggest that glial S100B though extrinsic to PKN is sequestered into cytoplasmic vacuoles in SCA1 mice at early postnatal ages. Further, S100B may be binding to RAGE on Purkinje cell membranes before these membranes are internalized.

SELECTION OF CITATIONS
SEARCH DETAIL
...