Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Photochem Photobiol Sci ; 16(8): 1320-1326, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28726954

ABSTRACT

The fluorescence quenching, by a series of amino acids, of pseudopeptidic compounds acting as probes for cellular acidity has been investigated. It has been found that amino acids containing electron-rich aromatic side chains like Trp or Tyr, as well as Met quench the emission of the probes mainly via a collisional mechanism, with Stern-Volmer constants in the 7-43 M-1 range, while other amino acids such as His, Val or Phe did not cause deactivation of the fluorescence. Only a minor contribution of a static quenching due to the formation of ground-state complexes has been found for Trp and Tyr, with association constants in the 9-24 M-1 range. For these ground-state complexes, a comparison between the macrocyclic probes and an open chain analogue reveals the existence of a moderate macrocyclic effect due to the preorganization of the probes in the more rigid structure.


Subject(s)
Amino Acids/chemistry , Macrocyclic Compounds/chemistry , Acridines/chemistry , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Kinetics , Spectrometry, Fluorescence , Tryptophan/chemistry , Tyrosine/chemistry
2.
Inorg Chem ; 52(9): 4753-5, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23611185

ABSTRACT

An insoluble salt of the water oxidation catalyst [Co9(H2O)6(OH)3(HPO4)2(PW9O34)3](16-) (Co9) has been used to modify amorphous carbon paste electrodes. The catalytic activity of this polyoxometalate is maintained in the solid state. Good catalytic rates are reached at reasonable overpotentials. As a heterogeneous catalyst, Co9 shows a remarkable long-term stability in turnover conditions. The oxygen evolution rate remains constant for hours without the appearance of any sign of fatigue or decomposition in a large pH range, including acidic conditions, where metal oxides are unstable.

3.
Inorg Chem ; 51(21): 11707-15, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23078372

ABSTRACT

The polyanion of formula {Co(9)(H(2)O)(6)(OH)(3)(HPO(4))(2)(PW(9)O(34))(3)}(16-) (Co(9)) contains a central nonacobalt core held together by hydroxo and hydrogen phosphate bridges and supported by three lacunary Keggin-type polyphosphotungstate ligands. Our data demonstrate that Co(9) is a homogeneous catalyst for water oxidation. Catalytic water electrolysis on fluorine-doped tin oxide coated glass electrodes occurs at reasonable low overpotentials and rates when Co(9) is present in a sodium phosphate buffer solution at neutral pH. We carried out our experiments with an excess of 2,2'-bipyridyl as the chelating agent for free aqueous Co(II) ions, in order to avoid the formation of a cobalt oxide film on the electrode, as observed for other polyoxometalate catalysts. In these conditions, no heterogeneous catalyst forms on the anode, and it does not show any deposited material or significant catalytic activity after a catalytic cycle. Co(9) is also an extremely robust catalyst for chemical water oxidation. It is able to continuously catalyze oxygen evolution during days from a buffered sodium hypochlorite solution, maintaining constant rates and efficiencies without any significant apparition of fatigue.

4.
J Phys Chem B ; 116(33): 9957-62, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22860895

ABSTRACT

In this work, the triplet state behavior of naphthalene-based pseudopeptides with amide-based macrocyclic or lateral chain substructures has been investigated in the presence of benzophenone and/or biphenyl, as suitable energy-donating chromophores. Their behavior has been compared with that of 1,4-dimethylnaphthalene as model compound. In all the cases, the triplet-triplet absorption of naphthalene is detected by transient absorption spectroscopy, upon selective excitation of benzophenone at 355 nm. The kinetics of formation and decay of this species is markedly slower in the pseudopeptides, due to retardation of triplet-triplet energy transfer and exciplex formation. Finally, the delayed fluorescence detected in the model naphthalene is absent in the pseudopeptides. The concept can, in principle, be exploited for the study of excited-state interactions in supramolecular systems.


Subject(s)
Benzophenones/chemistry , Biphenyl Compounds/chemistry , Naphthalenes/chemistry , Peptides/chemistry , Quantum Theory , Energy Transfer , Kinetics , Molecular Structure , Photolysis
6.
Inorg Chem ; 50(21): 11134-42, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21992177

ABSTRACT

The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.


Subject(s)
2,2'-Dipyridyl/chemistry , Coordination Complexes/chemistry , Hydrogen Peroxide/chemistry , Ruthenium/chemistry , Coordination Complexes/analysis , Electron Spin Resonance Spectroscopy , Electrons , Hydrogen Peroxide/metabolism , Isomerism , Ligands , Light , Models, Molecular , Oxidation-Reduction , Photochemical Processes/radiation effects , Quantum Theory , Water/chemistry , X-Ray Absorption Spectroscopy
7.
Chem Commun (Camb) ; 47(28): 8058-60, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21677991

ABSTRACT

The catalytic water oxidation activity of mononuclear ruthenium complexes comprising a pyridine-functionalized abnormal triazolylidene ligand can be adjusted by modification of the triazolylidene substituents, which is readily achieved through click-type cycloaddition chemistry, affording some of the most active ruthenium catalysts known thus far for water oxidation (TONs > 400, TOFs close to 7000 h(-1)).

9.
Acc Chem Res ; 42(12): 1944-53, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19908829

ABSTRACT

The photoproduction of hydrogen from water and sunlight represents an attractive means of artificial energy conversion for a world still largely dependent on fossil fuels. A practical technology for producing sun-derived hydrogen remains an unachieved goal, however, and is dependent on developing a better understanding of the key reaction, the oxidation of water to dioxygen. The molecular complexity of this process is such that sophisticated transition metal complexes, which can access low-energy reaction pathways, are considered essential as catalysts. Complexes based on Mn, Co, Ir, and Ru have been described recently; a variety of ligands and nuclearities that comprise many complex topologies have been developed, but very few of them have been studied from a mechanistic perspective. One step in particular needs to be understood and better characterized for the transition-metal-catalyzed oxidation of water to dioxygen, namely, the circumstances under which the formation of O-O bonds can occur. Although there is a large body of work related to the formation of C-C bonds promoted by metal complexes, the analogous literature for O-O bond formation is practically nonexistent and just beginning to emerge. In this Account, we describe the sparse literature existing on this topic, focusing on the Ru-aqua complexes. These complexes are capable of reaching high oxidation states as a result of the sequential and simultaneous loss of protons and electrons. A solvent water molecule may or may not participate in the formation of the O-O bond; accordingly, the two main pathways are named (i) solvent water nucleophilic attack (WNA) and (ii) interaction of two M-O units (I2M). Most of the complexes described belong to the WNA class, including a variety of mononuclear and polynuclear complexes containing one or several Ru-O units. A common feature of these complexes is the generation of formal oxidation states as high as Ru(V) and Ru(VI), which render the oxygen atom of the Ru-O group highly electrophilic. On the other hand, only one symmetric dinuclear complex that undergoes an intramolecular O-O bond formation step has been described for the I2M class; it has a formal oxidation state of Ru(IV). A special section is devoted to Ru-OH(2) complexes that contain redox active ligands, such as the chelating quinone. These ligands are capable of undergoing reversible redox processes and thus generate a complex but fascinating electron-transfer process between the metal and the ligand. Despite the intrinsic experimental difficulties in determining reaction mechanisms, progress with these Ru complexes is now beginning to be reported. An understanding of recent successes, as well as pitfalls, is essential in the search for a practical water oxidation catalyst.

10.
J Org Chem ; 74(16): 6130-42, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19606887

ABSTRACT

The binding between a pseudopeptidic macrocyclic naphthalenophane and different N-protected amino acid derivatives has been thoroughly studied by ESI-MS, NMR, fluorescence, and molecular modeling. Careful NMR titration experiments led to the characterization of the intermolecular noncovalent interactions, reflecting a slight side chain and l-stereoselectivity of the host-guest complexes. The data suggest the formation of an intimate ionic pair after the proton transfer from the carboxylic substrate to the amino macrocycle. Additional intermolecular interactions like H-bonding and pi-pi contacts are also important. This receptor shows a stronger interaction with substrates bearing aromatic rings, either in the side chain or in the N-protecting group. Besides, for N-Z-Phe-OH, a moderate enantioselectivity has been observed. Mass spectrometry suggests the formation of supramolecular complexes with stoichiometries higher than 1:1. The dual nature of the fluorescence emission of the macrocyclic receptor allowed determining binding constants and pertinent thermodynamic parameters. On the basis of the experimental data (NMR titrations, intermolecular ROESY, VT-NMR) and with the help of molecular modeling, a reasonable structure for the supramolecular complexes can be proposed, in which the interactions with the naphthyl ring of the receptor play a fundamental role in the strength and selectivity of the molecular recognition event.


Subject(s)
Amino Acids/chemistry , Macrocyclic Compounds/chemistry , Models, Molecular , Peptides/chemistry , Spectrometry, Mass, Electrospray Ionization , Gases/chemistry , Magnetic Resonance Spectroscopy , Molecular Conformation , Naphthalenes/chemistry , Solutions , Spectrometry, Fluorescence , Stereoisomerism
11.
Dalton Trans ; (36): 4027-33, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17828363

ABSTRACT

A turn-on fluorescent indicator for citric acid (citrate) has been developed, displaying high emission enhancement (+1500%) and low interference by other carboxylates. The sensor is based on the non-emissive copper(II) complex of a fluorescent amino amide, which, upon addition of citrate decomplexates to yield the emissive ligand. The detection limit estimated for this new chemosensing system is about 0.5 microM. This novel approach to the analysis of citrate constitutes an alternative ca. 10(2)-10(3) times more sensitive than the standard method based on the enzyme citrate lyase.


Subject(s)
Citrates/chemistry , Fluorescent Dyes/pharmacology , Citrates/analysis , Hydrogen-Ion Concentration , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Multienzyme Complexes/chemistry , Oxo-Acid-Lyases/chemistry , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared
12.
J Org Chem ; 72(21): 7947-56, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17887711

ABSTRACT

The conformational behavior of designed macrocyclic naphthalenophanes (1a,b and 2a,b) derived from amino acids (Phe and Val) has been used for studying NH...pi interactions. The cycles having 16- and 17-membered rings showed a dynamic process within the NMR time scale, produced by the flipping of the aromatic naphthalene moiety with respect to the macrocyclic main plane. We used the temperature dependence of 1H NMR to obtain activation parameters of the energetic barrier for the process (variable temperature NMR and line shape analysis). The rate of the movement clearly depends on the macrocyclic ring size and, more interestingly, on the nature of the peptidomimetic side chain, the energetic barrier being higher for the compounds bearing aromatic side chains. A largely negative entropic contribution to the free energy of activation was observed, with clear differences due to the side chain nature. Molecular modeling studies suggest that the aromatic rings interact with intramolecularly H-bonded amide NH groups, protecting them from solvation and thus leading to a larger unfavorable activation entropy. This NH...pi interaction has been exploited for the preparation of new systems (1c and meso-1b) with designed conformational preferences, in which aromatic rings tend to fold over amide NH groups. Thus, these minimalistic molecular rotors have served us as simple model systems for the study of NH...pi interactions and their implication in the folding of peptide-like molecules.


Subject(s)
Amides/chemistry , Models, Molecular , Naphthalenes/chemistry , Peptides/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Amino Acids/chemistry , Hydrogen Bonding , Naphthalenes/chemical synthesis , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Protein Conformation , Protein Folding , Stereoisomerism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...