Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(22): 27243-27252, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37218678

ABSTRACT

The search for safe, reliable, and compact high-capacity energy storage devices has led to increased interest in all-solid-state battery research. The use of solid electrolytes provides enhanced safety and durability due to their reduced flammability and increased mechanical strength compared to organic liquid electrolytes. Still, the use of solid electrolytes remains challenging. A significant issue is their generally low Li-ion conductivity, which depends on the lattice diffusion of Li ions through the solid phase, as well as on the limited contact area between the electrolyte particles. While the lattice diffusion can be addressed through the chemistry of the solid electrolyte material, the contact area is a mechanical and structural problem of packing and compression of the electrolyte particles depending on their size and shape. This work studies the effect of pressurization on the electrolyte conductivity exploring cases of low as well as high grain boundary (GB) conductivity, compared to the bulk conductivity. Scaling dependence, σ ∼ Pη, of the conductivity σ with pressure P is revealed. For an idealized electrolyte represented as spheres in hexagonal closely packed configuration, η = 2/3 and η = 1/3 have been theoretically calculated for the two cases of low and high GB conductivity, respectively. For randomly packed spheres, the equivalent exponent values were numerically estimated to be approximately 3/4 and 1/2, respectively, which are higher than the closed packed values due to the additional decrease of porosity with the increase in pressure. As demonstrated in the study, experimental measurement of η can indicate which type of bulk or GB conductivity is dominant in a particular electrolyte powder and could be used in addition to electrochemical impedance spectroscopy measurements.

2.
ACS Appl Mater Interfaces ; 14(18): 21363-21370, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35500131

ABSTRACT

Lithium (Li)-ion permeability of holey graphene (hG) for use as an electrically conducting scaffold in solid-state battery electrodes is explored through the means of a particle dynamics simulation model. While carbon materials do not typically exhibit Li-ion conductivity, the unique structural motif of hG, which consists of two-dimensional nanosheets with arrays of through-thickness holes, may present an opportunity for Li-ion conductors (i.e., solid electrolyte (SE) particles) to make contacts through the holes. In our model, the SE is presented as a system of hard elastic spheres conductive to Li-ions. The SE spheres are in contact with each other through compression between two plane current collectors. One hG layer is inserted between the current collectors and parallel to them. Randomly distributed circular holes in the hG allow for contact between the SE particles on both sides of the hG layer. By solving the Li-ion conducting network formed between the electrodes through the contact points of all the particles, the overall conductivity of the system was calculated as a function of SE particle size and the size and number of the hG holes (i.e., hG porosity). A critical ratio of around 4 between the SE particle size and the pore size was found. Below this critical value, the hG layer becomes practically transparent for Li-ions. This study helps to guide the design of highly efficient solid-state electrode composition and architectures using hG as a unique electrically conducting scaffold.

3.
ACS Appl Mater Interfaces ; 12(27): 30457-30465, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32538072

ABSTRACT

Aerogels are promising materials for many aerospace applications, including high-performance antennae and flexible insulation, because of their inherent low density and high surface areas. Polymer aerogels, especially polyimide aerogels, provide excellent mechanical properties beyond traditional silica aerogels while maintaining the required thermal stability. Polyimide aerogel surface area, porosity, and pore volume are important properties; however, these measurements are traditionally conducted on the aerogel after removal of the solvent. Because of this, the impact of synthetic control and solvent presence on the nanoscale to mesoscale structure of polyimide aerogels in functional applications is unclear. In this report, we use small-angle neutron scattering to determine the dry and solvated skeletal strut size and composition of polyimide aerogels to deduce the impact of solvation on the structure of complex aerogel struts. Our results show that the aerogel contains a hierarchical assembly of pores, with pores present both within and between the supporting struts. This translates to a material with solvent in the larger pores, as well as absorbed in the supporting polyimide skeleton. The amount of solvent uptake in the struts varies with the solvent and polyimide properties. The insight from these results provides pathways to determine the correlations between aerogel nano- and mesoscale structural characteristics, fabrication processes, and their performance in functional applications such as polymeric battery separators. These results also broaden the characterization tools of polymeric aerogels that differentiate between dry and solvated nano- and mesoscale structures that exist in common operating conditions.

4.
ACS Appl Mater Interfaces ; 9(9): 8287-8296, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28186399

ABSTRACT

With unique advantages over inorganic aerogels including higher strengths and compressive moduli, greater toughness, and the ability to be fabricated as a flexible thin film, polymer aerogels have the potential to supplant inorganic aerogels in numerous applications. Among polymer aerogels, polyimide aerogels possess a high degree of high thermal stability as well as outstanding mechanical properties. However, while the onset of thermal decomposition for these materials is typically very high (greater than 500 °C), the polyimide aerogels undergo dramatic thermally induced shrinkage at temperatures well below their glass transition (Tg) or decomposition temperature, which limits their use. In this study, we show that shrinkage is reduced when a bulky moiety is incorporated in the polymer backbone. Twenty different formulations of polyimide aerogels were synthesized from 3,3,'4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxidianiline (ODA) or a combination of ODA and 9,9'-bis(4-aminophenyl)fluorene (BAPF) and cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC) in a statistically designed study. The polymer concentration, n-value, and molar concentration of ODA and BAPF were varied to demonstrate the effect of these variables on certain properties. Samples containing BAPF showed a reduction in shrinkage by as much as 50% after aging at elevated temperatures for 500 h compared to those made with ODA alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...