Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 339: 122738, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37838318

ABSTRACT

Poly- and Perfluoroalkyl Substances (PFAS) are a well-known class of pollutants which can bioaccumulate and biomagnify with a vast majority being highly persistent. This study aims to determine the biomagnification rates of PFAS in sexually mature striped dolphins and to assess temporal trends on PFAS concentrations over the past three decades (1990-2021) in the North-Western Mediterranean Sea. Thirteen and 17 of the 19 targeted PFAS were detected in the samples of the dolphins' digestive content and liver, respectively, at concentrations ranging between 43 and 1609 ng/g wet weight, and 254 and 7010 ng/g wet weight, respectively. The most abundant compounds in both types of samples were linear perfluorooctanesulfonic acid (n-PFOS) and perfluorooctanesulfonamide (FOSA), which were present in all samples, followed by perfluoroundecanoic acid (PFUnDA), perfluorotridecanoic acid (PFTrDA) and perfluorononanoic acid (PFNA). Long-chain PFAS (i.e., PFCAs C ≥ 7 and PFSAs C ≥ 6) biomagnified to a greater extent than short-chain PFAS, suggesting a potential effect on the health of striped dolphins. Environmental Quality Standards concentrations set in 2014 by the European Union were exceeded in half of the samples of digestive content, suggesting that polluted prey may pose potential health risks for striped dolphins. Concentrations of most long-chain PFAS increased from 1990 to 2004-2009, then stabilized during 2014-2021, possibly following country regulations and industrial initiatives. The current study highlights the persistent presence of banned PFAS and may contribute to future ecological risk assessments and the design of management strategies to mitigate PFAS pollution in marine ecosystems.


Subject(s)
Alkanesulfonic Acids , Dolphins , Fluorocarbons , Stenella , Animals , Environmental Monitoring , Ecosystem , Mediterranean Sea , Bioaccumulation , Fluorocarbons/analysis , Alkanesulfonic Acids/analysis
2.
Chemosphere ; 339: 139686, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544523

ABSTRACT

Bisphenols (BPs) and phthalate esters (PAEs) are important compounds for the plastics industry, also called "everywhere chemicals" due to their ubiquity in daily use products. Both chemical groups are well-known environmental contaminants, whose presence has been reported in all environmental compartments, and whose effects, mainly associated to endocrine disruption, are detrimental to living organisms. Cetaceans, due to their long life-span, low reproduction rate and high position in the trophic web, are especially vulnerable to the effects of contaminants. However, little is known about BP and PAE concentrations in cetacean tissues, their potential relation to individual biological variables, or their trends over time. Here, the concentration of 10 BPs and 13 PAEs was assessed in the muscle of 30 striped dolphins (Stenella coeruleoalba) stranded along the Spanish Catalan coast (NW Mediterranean) between 1990 and 2018. Six BP and 6 PAE compounds were detected, of which only 4,4'-(cyclohexane-1,1-diyl)diphenol (BPZ) was detected in all the samples, at the highest concentration (mean 16.06 µg g-1 lipid weight). Sex or reproductive condition were largely uninfluential on concentrations: only dimethylphthalate (DMP) concentrations were significantly higher in immature individuals than in adults, and the overall PAE concentrations were significantly higher in males than in females. Temporal variations were only detected in bis(4-hydroxyphenyl)ethane (BPE), diethylphthalate (DEP) and dimethylphthalate (DMP), whose concentrations were lower, and 9,9-Bis(4-hydroxyphenyl)fluorene (BPFL), which were higher, respectively, in samples taken between 2014 and 2018, probably reflecting shifts in the production and use of these chemicals. These results provide the first assessment of concentrations of several BP and PAE compounds in the muscle of an odontocete cetacean.


Subject(s)
Stenella , Animals , Female , Male , Muscles , Esters
3.
Chemosphere ; 300: 134453, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35390406

ABSTRACT

The fin whale (Balaenoptera physalus) is a migratory filter-feeding species that is susceptible to ingest plastics while lunge feeding across the oceans. Plastic additives, such as phthalates, are compounds that are added to plastics to give them specific characteristics, such as flexibility. These so-called plasticizers are currently raising major concern because of their potential adverse effects on marine fauna. However, little is known about phthalate concentrations in tissues of baleen whales as well as their potential relation with biological variables (i.e., sex, body length and age) and their trends with time. In this study, we assessed the concentration of 13 phthalates in the muscle of 31 fin whales sampled in the feeding grounds off western Iceland between 1986 and 2015. We detected 5 of the 13 phthalates investigated, with di-n-butylphthalate (DBP), diethylphthalate (DEP) and bis(2-ethylhexyl) phthalate (DEHP) being the most abundant. None of the biological variables examined showed a statistically significant relationship with phthalate concentrations. Also, phthalate concentrations did not significantly vary over the 29-year period studied, a surprising result given the global scenario of increasing plastic pollution in the seas. The lack of time trends in phthalate concentration may be due in part to the fact that phthalates also originate from other sources. Although no adverse effects of phthalates on fin whales have been detected to date, further monitoring of these pollutants is required to identify potential toxic effects in the future.


Subject(s)
Fin Whale , Animals , Iceland , Phthalic Acids , Plastics
4.
Sci Total Environ ; 788: 147797, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34134375

ABSTRACT

The estuary of Río de la Plata, in the eastern coast of South America, is a highly anthropized area that brings a high load of contaminants to the surrounding waters, which may have detrimental effects on the local marine fauna. The franciscana dolphin (Pontoporia blainvillei) is a small cetacean species endemic of the southwestern Atlantic Ocean listed as Vulnerable in the IUCN red list. In this study, we assessed the concentrations of 13 trace elements in bone samples from 100 franciscana dolphins that were found stranded dead or incidentally bycaught in the Río de la Plata and adjacent coast between 1953 and 2015. Elements were, in decreasing order of mean concentrations: Zn > Sr > Fe > Al > Mn > Cu > Pb > Cr > Ni > As > Hg > Cd > Se. The concentrations of Al, Cr and Fe were slightly higher in females than in males. The concentrations of As, Ni, and Pb significantly decreased with body length. Throughout the study period, the concentrations of Al, Cr, Cu, Fe, Mn and Ni significantly increased, while the concentrations of As, Pb and Sr significantly decreased. The increasing trends may be due to increased inputs from river discharges, the leather industry and petroleum refineries, while the decrease in Pb may be due to the ban in the use of this element as an additive in gasoline and as component of car batteries. This investigation supports the validity of analysing trace element in bone, a tissue available in scientific collections and museums, to retrospectively examine variation over long temporal scales and thus assess long-term trends in pollution.


Subject(s)
Dolphins , Trace Elements , Water Pollutants, Chemical , Animals , Atlantic Ocean , Environmental Monitoring , Estuaries , Female , Male , Retrospective Studies , South America , Trace Elements/analysis , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 279: 130564, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33895676

ABSTRACT

In this study we aim to assess the daily ingestion rates of synthetic particles by the fin whales (Balaenoptera physalus) that feed off the western coast of Iceland. To do so, we collected and analysed samples from the stomach content of 25 fin whales, consisting solely of northern krill (Meganyctiphanes norvegica). The particles found consisted of fibres and fragments, mainly blue, black and red, with an average size of 1.2 ± 1.3 mm. To confirm the synthetic nature of these particles, we used Micro-Fourier Transform Infrared Spectroscopy and comparison with a polymer library. The mean concentration of synthetic particles in the krill samples found in the stomachs of whales was 0.057 particles per gram, a value much lower than that previously reported for particle uptake by krill. From this concentration in krill, we estimated that the daily intake of synthetic particles for the North Atlantic fin whale would be ranging from 38,646 ± 43,392 to 77,292 ± 86,784 particles per day. Although at this level it is not possible to assess the impact of synthetic particles and their associated chemicals on the North Atlantic fin whale population, concentrations of these contaminants are likely to increase in the future, potentially causing adverse effects on whales and other marine mammals.


Subject(s)
Fin Whale , Animals , Eating , Iceland , Seasons , Whales
6.
Environ Pollut ; 273: 116490, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33486249

ABSTRACT

The threats posed by floating marine macro-litter (FMML) of anthropogenic origin to the marine fauna, and marine ecosystems in general, are universally recognized. Dedicated monitoring programmes and mitigation measures are in place to address this issue worldwide, with the increasing support of new technologies and the automation of analytical processes. In the current study, we developed algorithms capable of detecting and quantifying FMML in aerial images, and a web-oriented application that allows users to identify FMML within images of the sea surface. The proposed algorithm is based on a deep learning approach that uses convolutional neural networks (CNNs) capable of learning from unstructured or unlabelled data. The CNN-based deep learning model was trained and tested using 3723 aerial images (50% containing FMML, 50% without FMML) taken by drones and aircraft over the waters of the NW Mediterranean Sea. The accuracies of image classification (performed using all the images for training and testing the model) and cross-validation (performed using 90% of images for training and 10% for testing) were 0.85 and 0.81, respectively. The Shiny package of R was then used to develop a user-friendly application to identify and quantify FMML within the aerial images. The implementation of this, and similar algorithms, allows streamlining substantially the detection and quantification of FMML, providing support to the monitoring and assessment of this environmental threat. However, the automated monitoring of FMML in the open sea still represents a technological challenge, and further research is needed to improve the accuracy of current algorithms.

7.
Mar Pollut Bull ; 158: 111397, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32753182

ABSTRACT

This study assesses microplastic ingestion in Boops boops at different geographical areas in the Mediterranean Sea. A total of 884 fish were caught at 20 coastal sites in Spain, France, Italy and Greece and analyzed using a common methodological protocol. Microplastics were found in 46.8% of the sampled fish, with an average number of items per individual of 1.17 ± 0.07. Filaments were the predominant shape type, while polyethylene and polypropylene were indicated by FTIR as the most common polymer types of ingested microplastics. The frequency of occurrence, as well as the abundance and proportion of types (size, shape, color and polymer) of ingested microplastics, varied among geographical areas. The spatial heterogeneity of the abundance of ingested microplastics was mainly related to the degree of coastal anthropogenic pressure at the sampling sites. Our findings further support the suitability of B. boops as bioindicator of microplastic pollution in the Mediterranean Sea.


Subject(s)
Plastics , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , France , Greece , Italy , Mediterranean Sea , Microplastics , Spain
8.
Mar Pollut Bull ; 159: 111467, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32692674

ABSTRACT

The aim of the present study was twofold: (i) to validate the drone methodology for floating marine macro-litter (FMML) monitoring, by comparing the results obtained through concurrent drone surveys and visual observations from vessels, and (ii) to assess FMML densities along the North Western Mediterranean Sea using the validated drone surveys. The comparison between monitoring techniques was performed based on 18 concurrent drone/vessel transects. Similar densities of FMML were detected through the two methods (16 items km-2 from the drone method vs 19 items km-2 from the vessel-based visual method). The assessment of FMML densities was done using 40 additional drone transects performed over the waters off the Catalan coast. The densities of FMML observed ranged 0-200 items km-2. These results provide a validation of the use of drones to monitor FMML and contribute to increasing the knowledge about the density of FMML in the North Western Mediterranean Sea.


Subject(s)
Plastics , Waste Products/analysis , Environmental Monitoring , Mediterranean Sea
9.
Sci Total Environ ; 721: 137768, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32197282

ABSTRACT

Pollution of the marine environment by litter composed of plastics is a growing concern. Chemical additives such as organophosphate flame retardants (OPFRs), which are added to plastics to improve their qualities, are in focus because they allegedly cause adverse effects on marine fauna. Here we analyse OPFR levels in the muscle of fin whales because, as a mysticete, this cetacean obtains its food by filter-feeding and is thus highly vulnerable to marine litter. Moreover, the fin whale performs long-range migrations from low-latitude areas in winter to high-latitude areas in summer, a trait that makes it a potentially good large-scale biomonitor of pollution. We also analyse OPFR levels in its main prey, the krill Meganyctiphanes norvegica, to assess transfer through diet. The samples analysed consisted of muscle tissue from 20 fin whales and whole-body homogenates of 10 krill samples, all collected off West Iceland. From the 19 OPFRs analysed, we detected 7 in the fin whale and 5 in the krill samples. Tri-n-butyl phosphate (TNBP), Isopropylated triphenyl phosphate (IPPP) and Triphenylphosphine oxide (TPPO) were the most abundant compounds found in both species. Mean ∑OPFR concentration, expressed on a lipid weight basis, was 985 (SD = 2239) ng g-1 in fin whale muscle, and 949 (SD = 1090) ng g-1 in krill homogenates. These results constitute the first evidence of the presence of OPFRs in the tissues of fin whales. Furthermore, they seem to support the non-significance of bioaccumulation of OPFRs through lifespan and of biomagnification trough the food web.


Subject(s)
Fin Whale , Flame Retardants , Animals , Iceland , Organophosphates , Plastics
10.
Chemosphere ; 252: 126569, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32220724

ABSTRACT

Plastic litter pollution is increasing in the seas and oceans worldwide, raising concern on the potential effects of plasticizer additives on marine fauna. In this study, muscle samples of 30 bogues (Boops boops; Linneaus, 1758) from the North Western Mediterranean Sea were analysed to assess the concentrations of 19 organophosphate flame retardant (OPFR) compounds and to inspect any relationship with microplastic ingestion and relative levels of anthropization. Out of the 19 OPFRs analysed, 6 compounds were detected, being tri-n-butyl phosphate (TNBP), 2-ethylhexyldiphenyl phosphate (EHDPP) and triphenylphosphine oxide (TPPO) the most abundant. As expected, OPFR concentrations were higher in samples collected off the most anthropized area of the city of Barcelona than in those from the Cap de Creus Marine Protected Area, while no significant correlation was detected between OPFR concentrations and microplastic ingestion. The results of this manuscript provide a first evidence of OPFR presence in the muscle of the bogue and identify the coastal area off Barcelona as a possible concentration area for contaminants, further supporting the use of the bogue as an indicator species of plastic pollution in the Mediterranean Sea.


Subject(s)
Environmental Monitoring , Flame Retardants/metabolism , Microplastics/analysis , Organophosphates/metabolism , Perciformes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Flame Retardants/analysis , Mediterranean Sea , Organophosphates/analysis , Organophosphorus Compounds , Plasticizers/analysis , Plastics/analysis
11.
Mar Environ Res ; 155: 104884, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32072986

ABSTRACT

Highly migratory marine species pose a challenge for the identification of management units due to the absence of clear oceanographic barriers. The population structure of North Atlantic fin whales has been investigated since the start of whaling operations but is still the subject of an ongoing scientific debate. Here we measured stable isotopes of carbon, nitrogen and oxygen in skin samples collected from 151 individuals from western Iceland, Galicia (NW Spain), the Azores archipelago and the Strait of Gibraltar (SoG). We found spatiotemporal differences in stable isotope ratios suggesting that fin whales sampled in these four areas may share a common feeding ground within the Northeast Atlantic at different times during the year. Our results also suggest that SoG whales use this common feeding ground in summer but exploit Mediterranean resources during the winter months, further supporting the existence of a limited but current exchange of individuals between these two basins.


Subject(s)
Fin Whale , Food Chain , Animals , Azores , Gibraltar , Iceland , Spain
12.
Environ Pollut ; 258: 113680, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31796317

ABSTRACT

Pollution by marine litter is raising major concerns due to its potential impact on marine biodiversity and, above all, on endangered mega-fauna species, such as cetaceans and sea turtles. The density and distribution of marine litter and mega-fauna have been traditionally monitored through observer-based methods, yet the advent of new technologies has introduced aerial photography as an alternative monitoring method. However, to integrate results produced by different monitoring techniques and consider the photographic method a viable alternative, this 'new' methodology must be validated. This study aims to compare observations obtained from the concurrent application of observer-based and photographic methods during aerial surveys. To do so, a Partenavia P-68 aircraft equipped with an RGB sensor was used to monitor the waters off the Spanish Mediterranean coast along 12 transects (941 km). Over 10000 images were collected and checked manually by a photo-interpreter to detect potential targets, which were classified as floating marine macro-litter, mega-fauna and seabirds. The two methods allowed the detection of items from the three categories and proved equally effective for the detection of cetaceans, sea turtles and large fish on the sea surface. However, the photographic method was more effective for floating litter detection and the observer-based method was more effective for seabird detection. These results provide the first validation of the use of aerial photography to monitor floating litter and mega-fauna over the marine surface.


Subject(s)
Cetacea/metabolism , Environmental Monitoring/methods , Plastics , Turtles , Animals , Mediterranean Sea , Photography , Remote Sensing Technology , Waste Products
13.
Sci Total Environ ; 650(Pt 1): 1224-1230, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30308810

ABSTRACT

Strontium is a metal broadly distributed in oceanic waters, where its concentrations follow gradients mainly driven by oceanographic and biological factors. Studies on terrestrial vertebrates show that Sr can accumulate in mammalian hair in amounts mainly related to the external environment, a property that has been scarcely investigated in aquatic mammals. Cetaceans are marine mammals whose skin is generally hairless, but the species belonging to the mysticete group feed through a filtering apparatus made of keratinous baleen plates that, like hair, grow continuously. During their annual latitudinal migrations, mysticetes cross water masses with variable chemo-physical characteristics that may be reflected in these tissues. In the present study, baleen plates were sampled from 10 fin whales obtained from NW Spain (N = 5) and SW Iceland (N = 5) to investigate Sr concentrations along the plates growth axis. Samples were taken longitudinally at regular 1 cm-intervals on each plate. Sr concentrations, determined through mass spectrometry, ranged from 5 to 40 mg kg-1 and increased from proximal to distal positions along plates. These results suggest a progressive adsorption of Sr on the plate surface, a process that also occurs in mammalian hair. Increasing trends were similar in the two regions but overall concentrations were significantly higher in NW Spain, reflecting different Sr baseline concentrations in the two areas and indicating isolation between the two whale populations. Some oscillations in Sr longitudinal trends were also detected, likely indicating that whales migrate across water masses with different Sr baselines. These results suggest that Sr concentrations in keratinous tissues of marine mammals can be used as ecological tracers of their migrations and habitat use.


Subject(s)
Animal Migration , Environmental Monitoring , Fin Whale/metabolism , Strontium/analysis , Water Pollutants, Chemical/analysis , Animals , Strontium/metabolism , Water Pollutants, Chemical/metabolism
14.
Chemosphere ; 171: 81-88, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28011406

ABSTRACT

Metals are massively deposited in the marine environment through direct emissions or atmospheric dry and wet depositions, a process since long enhanced by human activities. Metal contamination in the marine organisms has been increasingly investigated, but most research focuses on few tissues, elements and species considered indicative. Baleen whales have been scarcely studied in this respect. Here we contribute to the fragmented knowledge on this field examining the concentrations of zinc, copper, lead, titanium and strontium in the bone of fin whales (Balaenoptera physalus) from NW Spain and W Iceland. Bone was selected because it is a tissue commonly available in archival historic collections, and it is therefore useful to examine long-term trends in metal pollution. We tested differences between populations and we investigated age- and sex-related accumulation trends, as well as the occurrence of placental transfer. Sr concentrations and Pb accumulation rates with age were significantly higher in individuals from NW Spain than in those from W Iceland. Placental transfer occurred, at different levels, for all metals: as a result fetuses showed significantly higher Cu, Pb and Zn concentrations than adults. After birth, only Zn and Pb concentrations significantly increased with age. Through this study we contributed to fill some gaps in the knowledge regarding metal contamination in marine mammals, and we concluded that bone can be a suitable surrogate tissue to monitor a number of trace elements, provided that dissimilarities in tissue-specific deposition are taken into account when comparing concentrations from different tissues.


Subject(s)
Biomarkers/metabolism , Bone and Bones/metabolism , Environmental Monitoring/methods , Environmental Pollution/analysis , Fin Whale/metabolism , Metals/analysis , Trace Elements/analysis , Age Factors , Animals , Environment , Female , Fin Whale/growth & development , Humans , Iceland , Male , Sex Factors , Spain
15.
Chemosphere ; 127: 229-37, 2015 May.
Article in English | MEDLINE | ID: mdl-25746921

ABSTRACT

Fluoride is retained in bone tissues of animals and its availability in the environment varies between regions according to natural and anthropogenic sources. These properties suggest this element as a suitable tracer of origin, distribution or movements of animals. In marine environments, krill builds-up fluoride concentrations that are transferred to its predators. In this study we examine the ability of bone fluoride concentrations to discriminate two separate populations of a krill consumer, the fin whale. Background levels of the sampling areas (Western Iceland and North-Western Spain) were determined through the analysis of krill samples. As expected, due to the high load of volcanic-derived fluoride in Icelandic waters, krill from W Iceland showed much higher fluoride concentrations than that from NW Spain. Concentrations in whales' bone were correlated with sex and age, increasing linearly with age in females and showing significantly lower values and a different age-related pattern of accumulation in males. Fluoride concentrations in whales' bone were much higher than in krill, indicating accumulation of the element but, rather unexpectedly, the area of origin had no influence on concentrations. This apparent contradiction may be explained either by the integration in bone of food consumed in other areas, or by the activation of homeostatic responses at very high levels of fluoride exposure. It is concluded that fluoride can be a useful tracer only if age and sex data are integrated into the analysis, year-round information on diet is available and/or the investigated population is exposed to mild levels of this element.


Subject(s)
Bone and Bones/chemistry , Environmental Monitoring/methods , Euphausiacea/chemistry , Fin Whale/metabolism , Fluorides/analysis , Aging/metabolism , Animals , Bone and Bones/metabolism , Ecology , Euphausiacea/metabolism , Female , Fin Whale/growth & development , Food Chain , Iceland , Male , Sex Factors , Spain
16.
PLoS One ; 9(3): e90489, 2014.
Article in English | MEDLINE | ID: mdl-24598539

ABSTRACT

From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina) and another off central Argentina (Peninsula Valdés). This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n=72) and from contemporary and more recent strandings occurring in central Argentina (n=53). Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas.


Subject(s)
Whales/metabolism , Animals , Argentina , Atlantic Ocean , Bone and Bones/metabolism , Brazil , Carbon Isotopes/metabolism , Nitrogen Isotopes/metabolism , Oxygen Isotopes/metabolism , Population Dynamics
17.
PLoS One ; 8(12): e82398, 2013.
Article in English | MEDLINE | ID: mdl-24324782

ABSTRACT

In pelagic species inhabiting large oceans, genetic differentiation tends to be mild and populations devoid of structure. However, large cetaceans have provided many examples of structuring. Here we investigate whether the sperm whale, a pelagic species with large population sizes and reputedly highly mobile, shows indication of structuring in the eastern North Atlantic, an ocean basin in which a single population is believed to occur. To do so, we examined stable isotope values in sequential growth layer groups of teeth from individuals sampled in Denmark and NW Spain. In each layer we measured oxygen- isotope ratios (δ(18)O) in the inorganic component (hydroxyapatite), and nitrogen and carbon isotope ratios (δ(15)N: δ(13)C) in the organic component (primarily collagenous). We found significant differences between Denmark and NW Spain in δ(15)N and δ(18)O values in the layer deposited at age 3, considered to be the one best representing the baseline of the breeding ground, in δ(15)N, δ(13)C and δ(18)O values in the period up to age 20, and in the ontogenetic variation of δ(15)N and δ(18)O values. These differences evidence that diet composition, use of habitat and/or migratory destinations are dissimilar between whales from the two regions and suggest that the North Atlantic population of sperm whales is more structured than traditionally accepted.


Subject(s)
Ecosystem , Sperm Whale , Animals , Carbon Isotopes , Denmark , Female , Geography , Humans , Isotope Labeling , Male , Nitrogen Isotopes , Oxygen Isotopes , Population Density , Population Dynamics , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...