Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 17(17): e202200588, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35831237

ABSTRACT

The immobilization of enzymes in solid-state nanochannels is a new avenue for the design of biosensors with outstanding selectivity and sensitivity. This work reports the first theoretical model of an enzymatic nanochannel biosensor. The model is applied to the system previously experimentally studied by Lin, et al. (Anal. Chem. 2014, 86, 10546): a hourglass nanochannel modified by glucose oxidase for the detection of glucose. Our predictions are in good agreement with experimental observations as a function of the applied potential, pH and glucose concentration. The sensing mechanism results from the combination of three processes: i) the establishment of a steady-state proton concentration gradient due to a reaction-diffusion mechanism, ii) the effect of that gradient on the charge of the adsorbed enzymes and native surface groups, and iii) the effect of the resulting surface charge on the ionic current. Strategies to improve the sensor performance based on this mechanism are identified and discussed.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Glucose , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...