Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
BMC Microbiol ; 24(1): 221, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909237

ABSTRACT

BACKGROUND: Group B Streptococcus (GBS) is a commensal of healthy adults and an important pathogen in newborns, the elderly and immunocompromised individuals. GBS displays several virulence factors that promote colonisation and host infection, including the ST-17 strain-specific adhesin Srr2, previously characterised for its binding to fibrinogen. Another common target for bacterial adhesins and for host colonization is fibronectin, a multi-domain glycoprotein found ubiquitously in body fluids, in the extracellular matrix and on the surface of cells. RESULTS: In this study, fibronectin was identified as a novel ligand for the Srr2 adhesin of GBS. A derivative of the ST-17 strain BM110 overexpressing the srr2 gene showed an increased ability to bind fibrinogen and fibronectin, compared to the isogenic wild-type strain. Conversely, the deletion of srr2 impaired bacterial adhesion to both ligands. ELISA assays and surface plasmon resonance studies using the recombinant binding region (BR) form of Srr2 confirmed a direct interaction with fibronectin with an estimated Kd of 92 nM. Srr2-BR variants defective in fibrinogen binding also exhibited no interaction with fibronectin, suggesting that Srr2 binds this ligand through the dock-lock-latch mechanism, previously described for fibrinogen binding. The fibronectin site responsible for recombinant Srr2-BR binding was identified and localised in the central cell-binding domain of the protein. Finally, in the presence of fibronectin, the ability of a Δsrr2 mutant to adhere to human cervico-vaginal epithelial cells was significantly lower than that of the wild-type strain. CONCLUSION: By combining genetic and biochemical approaches, we demonstrate a new role for Srr2, namely interacting with fibronectin. We characterised the molecular mechanism of this interaction and demonstrated that it plays a role in promoting the adhesion of GBS to human cervico-vaginal epithelial cells, further substantiating the role of Srr2 as a factor responsible for the hypervirulence of GBS ST-17 strains. The discovery of the previously undescribed interaction between Srr2 and fibronectin establishes this adhesin as a key factor for GBS colonisation of host tissues.


Subject(s)
Adhesins, Bacterial , Bacterial Adhesion , Fibronectins , Protein Binding , Streptococcus agalactiae , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity , Fibronectins/metabolism , Humans , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Fibrinogen/metabolism , Fibrinogen/genetics , Epithelial Cells/microbiology , Female , Streptococcal Infections/microbiology , Virulence Factors/metabolism , Virulence Factors/genetics
2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474207

ABSTRACT

This Special Issue, "Mass Spectrometric Proteomics 2 [...].


Subject(s)
Proteomics , Proteomics/methods , Mass Spectrometry/methods
3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37686340

ABSTRACT

Human neutrophil elastase (HNE) is involved in SARS-CoV-2 virulence and plays a pivotal role in lung infection of patients infected by COVID-19. In healthy individuals, HNE activity is balanced by α1-antitrypsin (AAT). This is a 52 kDa glycoprotein, mainly produced and secreted by hepatocytes, that specifically inhibits HNE by blocking its activity through the formation of a stable complex (HNE-AAT) in which the two proteins are covalently bound. The lack of this complex, together with the detection of HNE activity in BALf/plasma samples of COVID-19 patients, leads us to hypothesize that potential functional deficiencies should necessarily be attributed to possible structural modifications of AAT. These could greatly diminish its ability to inhibit neutrophil elastase, thus reducing lung protection. The aim of this work was to explore the oxidation state of AAT in BALf/plasma samples from these patients so as to understand whether the deficient inhibitory activity of AAT was somehow related to possible conformational changes caused by the presence of abnormally oxidized residues.


Subject(s)
COVID-19 , Leukocyte Elastase , Humans , SARS-CoV-2 , Oxidation-Reduction , Biological Transport
4.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569716

ABSTRACT

In Antarctica, ice-free areas can be found along the coast, on mountain peaks, and in the McMurdo Dry Valleys, where microorganisms well-adapted to harsh conditions can survive and reproduce. Metabolic analyses can shed light on the survival mechanisms of Antarctic soil communities from both coastal sites, under different plant coverage stages, and inner sites where slow-growing or dormant microorganisms, low water availability, salt accumulation, and a limited number of primary producers make metabolomic profiling difficult. Here, we report, for the first time, an efficient protocol for the extraction and the metabolic profiling of Antarctic soils based on the combination of NMR spectroscopy and mass spectrometry (MS). This approach was set up on samples harvested along different localities of Victoria Land, in continental Antarctica, devoid of or covered by differently developed biological crusts. NMR allowed for the identification of thirty metabolites (mainly sugars, amino acids, and organic acids) and the quantification of just over twenty of them. UPLC-MS analysis identified more than twenty other metabolites, in particular flavonoids, medium- and long-chain fatty acids, benzoic acid derivatives, anthracenes, and quinones. Our results highlighted the complementarity of the two analytical techniques. Moreover, we demonstrated that their combined use represents the "gold standard" for the qualitative and quantitative analysis of little-explored samples, such as those collected from Antarctic soils.


Subject(s)
Soil , Tandem Mass Spectrometry , Soil/chemistry , Antarctic Regions , Pilot Projects , Chromatography, Liquid , Metabolomics/methods
5.
Vaccines (Basel) ; 11(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37376428

ABSTRACT

The Burkholderia cepacia complex comprises environmental and clinical Gram-negative bacteria that infect particularly debilitated people, such as those with cystic fibrosis. Their high level of antibiotic resistance makes empirical treatments often ineffective, increasing the risk of worst outcomes and the diffusion of multi-drug resistance. However, the discovery of new antibiotics is not trivial, so an alternative can be the use of vaccination. Here, the reverse vaccinology approach has been used to identify antigen candidates, obtaining a short-list of 24 proteins. The localization and different aspects of virulence were investigated for three of them-BCAL1524, BCAM0949, and BCAS0335. The three antigens were localized in the outer membrane vesicles confirming that they are surface exposed. We showed that BCAL1524, a collagen-like protein, promotes bacteria auto-aggregation and plays an important role in virulence, in the Galleria mellonella model. BCAM0949, an extracellular lipase, mediates piperacillin resistance, biofilm formation in Luria Bertani and artificial sputum medium, rhamnolipid production, and swimming motility; its predicted lipolytic activity was also experimentally confirmed. BCAS0335, a trimeric adhesin, promotes minocycline resistance, biofilm organization in LB, and virulence in G. mellonella. Their important role in virulence necessitates further investigations to shed light on the usefulness of these proteins as antigen candidates.

6.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142593

ABSTRACT

We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Extracellular Vesicles/metabolism , Ischemia/metabolism , Kidney/metabolism , Mesenchymal Stem Cells/metabolism , Rats
7.
Curr Issues Mol Biol ; 44(5): 2122-2138, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35678672

ABSTRACT

Neutrophils play a pathogenic role in COVID-19 by releasing Neutrophils Extracellular Traps (NETs) or human neutrophil elastase (HNE). Given that HNE is inhibited by α1-antitrypsin (AAT), we aimed to assess the content of HNE, α1-antitrypsin (AAT) and HNE-AAT complexes (the AAT/HNE balance) in 33 bronchoalveolar lavage fluid (BALf) samples from COVID-19 patients. These samples were submitted for Gel-Electrophoresis, Western Blot and ELISA, and proteins (bound to AAT or HNE) were identified by Liquid Chromatography-Mass Spectrometry. NETs' release was analyzed by confocal microscopy. Both HNE and AAT were clearly detectable in BALf at high levels. Contrary to what was previously observed in other settings, the formation of HNE-AAT complex was not detected in COVID-19. Rather, HNE was found to be bound to acute phase proteins, histones and C3. Due to the relevant role of NETs, we assessed the ability of free AAT to bind to histones. While confirming this binding, AAT was not able to inhibit NET formation. In conclusion, despite the finding of a high burden of free and bound HNE, the lack of the HNE-AAT inhibitory complex in COVID-19 BALf demonstrates that AAT is not able to block HNE activity. Furthermore, while binding to histones, AAT does not prevent NET formation nor their noxious activity.

8.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628501

ABSTRACT

The identification of markers of inflammatory activity at the early stages of pulmonary diseases which share common characteristics that prevent their clear differentiation is of great significance to avoid misdiagnosis, and to understand the intrinsic molecular mechanism of the disorder. The combination of electrophoretic/chromatographic methods with mass spectrometry is currently a promising approach for the identification of candidate biomarkers of a disease. Since the fluid phase of sputum is a rich source of proteins which could provide an early diagnosis of specific lung disorders, it is frequently used in these studies. This report focuses on the state-of-the-art of the application, over the last ten years (2011-2021), of sputum proteomics in the investigation of severe lung disorders such as COPD; asthma; cystic fibrosis; lung cancer and those caused by COVID-19 infection. Analysis of the complete set of proteins found in sputum of patients affected by these disorders has allowed the identification of proteins whose levels change in response to the organism's condition. Understanding proteome dynamism may help in associating these proteins with alterations in the physiology or progression of diseases investigated.


Subject(s)
Lung Diseases , Proteome , Sputum , Biomarkers/metabolism , Humans , Lung/metabolism , Lung Diseases/diagnosis , Proteome/metabolism , Proteomics/methods , Sputum/chemistry
9.
Int J Mol Sci ; 22(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34576123

ABSTRACT

Nasu-Hakola Disease (NHD) is a recessively inherited systemic leukodystrophy disorder characterized by a combination of frontotemporal presenile dementia and lytic bone lesions. NHD is known to be genetically related to a structural defect of TREM2 and DAP12, two genes that encode for different subunits of the membrane receptor signaling complex expressed by microglia and osteoclast cells. Because of its rarity, molecular or proteomic studies on this disorder are absent or scarce, only case reports based on neuropsychological and genetic tests being reported. In light of this, the aim of this paper is to provide evidence on the potential of a label-free proteomic platform based on the Multidimensional Protein Identification Technology (MudPIT), combined with in-house software and on-line bioinformatics tools, to characterize the protein expression trends and the most involved pathways in NHD. The application of this approach on the Lymphoblastoid cells from a family composed of individuals affected by NHD, healthy carriers and control subjects allowed for the identification of about 3000 distinct proteins within the three analyzed groups, among which proteins anomalous to each category were identified. Of note, several differentially expressed proteins were associated with neurodegenerative processes. Moreover, the protein networks highlighted some molecular pathways that may be involved in the onset or progression of this rare frontotemporal disorder. Therefore, this fully automated MudPIT platform which allowed, for the first time, the generation of the whole protein profile of Lymphoblastoid cells from Nasu-Hakola subjects, could be a valid approach for the investigation of similar neurodegenerative diseases.


Subject(s)
Lipodystrophy/metabolism , Lipodystrophy/pathology , Lymphocytes/metabolism , Lymphocytes/pathology , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Proteomics , Subacute Sclerosing Panencephalitis/metabolism , Subacute Sclerosing Panencephalitis/pathology , Cluster Analysis , Discriminant Analysis , Humans , Membrane Glycoproteins/metabolism , Protein Interaction Maps , Receptors, Immunologic/metabolism , Systems Biology
10.
Mol Genet Genomic Med ; 9(9): e1753, 2021 09.
Article in English | MEDLINE | ID: mdl-34318601

ABSTRACT

BACKGROUND: Vascular Ehlers-Danlos syndrome (vEDS) is a heritable connective tissue disorder caused by defects in the type III collagen protein. It is generally considered the most severe form of Ehlers-Danlos syndrome (EDS) due to an increased risk of spontaneous artery or organ rupture. vEDS has an extremely heterogeneous presentation and muscle rupture is considered a minor diagnostic criterium. METHODS: A patient with a long history of inconclusive examinations and investigations was referred to our unit. The clinical picture was mainly characterized by muscle ruptures, whereas the cardiovascular involvement was limited to mitral regurgitation. We performed a panel analysis of genes associated with inheritable heart diseases using the TruSight Cardio kit (Illumina). A skin biopsy was then performed for functional studies to analyze the different forms of collagen molecules produced in vitro by cutaneous fibroblasts. RESULTS: The patient presented the novel variant c.3478A>G (p.Ile1160Val) in COL3A1 (NM_000090.3), whose pathogenicity was supported by biochemical analysis of type III collagen. CONCLUSION: In this report, we describe a case of vEDS with predominant and severe musculoskeletal involvement. Our findings provide insight into genetic variants and clinical expression of vEDS, broadening the clinical scenario of the syndrome.


Subject(s)
Collagen Type III/genetics , Ehlers-Danlos Syndrome/genetics , Phenotype , Adult , Ehlers-Danlos Syndrome/pathology , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation
11.
Int J Mol Sci ; 22(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494436

ABSTRACT

As a known genetic cause of chronic obstructive pulmonary disease (COPD), alpha1-antitrypsin deficiency (AATD) can cause severe respiratory problems at a relatively young age. These problems are caused by decreased or absent levels of alpha1-antitrypsin (AAT), an antiprotease which is primarily functional in the respiratory system. If the levels of AAT fall below the protective threshold of 11 µM, the neutrophil-derived serine proteases neutrophil elastase (NE) and proteinase 3 (PR3), which are targets of AAT, are not sufficiently inhibited, resulting in excessive degradation of the lung parenchyma, increased inflammation, and increased susceptibility to infections. Because other therapies are still in the early phases of development, the only therapy currently available for AATD is AAT augmentation therapy. The controversy surrounding AAT augmentation therapy concerns its efficiency, as protection of lung function decline is not demonstrated, despite the treatment's proven significant effect on lung density change in the long term. In this review article, novel biomarkers of NE and PR3 activity and their use to assess the efficacy of AAT augmentation therapy are discussed. Furthermore, a series of seven synthetic NE and PR3 inhibitors that can be used to evaluate the specificity of the novel biomarkers, and with potential as new drugs, are discussed.


Subject(s)
Biomarkers , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/metabolism , alpha 1-Antitrypsin Deficiency/complications , Animals , Disease Management , Disease Susceptibility , Drug Discovery/methods , Humans , Peptide Hydrolases/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Pulmonary Emphysema/diagnosis , Pulmonary Emphysema/drug therapy , Structure-Activity Relationship
12.
Sci Rep ; 10(1): 20726, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244143

ABSTRACT

Bronchiolitis Obliterans Syndrome seriously reduces long-term survival of lung transplanted patients. Up to now there is no effective therapy once BOS is established. Nanomedicine introduces the possibility to administer drugs locally into lungs increasing drug accumulation in alveola reducing side effects. Imatinib was loaded in gold nanoparticles (GNP) functionalized with antibody against CD44 (GNP-HCIm). Lung fibroblasts (LFs) were derived from bronchoalveolar lavage of BOS patients. GNP-HCIm cytotoxicity was evaluated by MTT assay, apoptosis/necrosis and phosphorylated-cAbl (cAbl-p). Heterotopic tracheal transplantation (HTT) mouse model was used to evaluate the effect of local GNP-HCIm administration by Alzet pump. GNP-HCIm decreased LFs viability compared to Imatinib (44.4 ± 1.8% vs. 91.8 ± 3.2%, p < 0.001), inducing higher apoptosis (22.68 ± 4.3% vs. 6.43 ± 0.29; p < 0.001) and necrosis (18.65 ± 5.19%; p < 0.01). GNP-HCIm reduced cAbl-p (0.41 GNP-HCIm, 0.24 Imatinib vs. to control; p < 0.001). GNP-HCIm in HTT mouse model by Alzet pump significantly reduced tracheal lumen obliteration (p < 0.05), decreasing apoptosis (p < 0.05) and TGF-ß-positive signal (p < 0.05) in surrounding tissue. GNP-HCIm treatment significantly reduced lymphocytic and neutrophil infiltration and mast cells degranulation (p < 0.05). Encapsulation of Imatinib into targeted nanoparticles could be considered a new option to inhibit the onset of allograft rejection acting on BOS specific features.


Subject(s)
Bronchioles/drug effects , Bronchiolitis Obliterans/prevention & control , Gold/administration & dosage , Imatinib Mesylate/pharmacology , Lung/drug effects , Metal Nanoparticles/administration & dosage , Animals , Apoptosis/drug effects , Bronchioles/metabolism , Bronchiolitis Obliterans/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hyaluronan Receptors/metabolism , Lung/metabolism , Lung Transplantation/adverse effects , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Trachea/drug effects , Trachea/metabolism , Transforming Growth Factor beta/metabolism
13.
Molecules ; 25(17)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887469

ABSTRACT

The aim of the present report is to review the literature addressing the methods developed for the purification of alpha1-antitrypsin (AAT) from the 1950s to the present. AAT is a glycoprotein whose main function is to protect tissues from human neutrophil elastase (HNE) and other proteases released by neutrophils during an inflammatory state. The lack of this inhibitor in human serum is responsible for the onset of alpha1-antitrypsin deficiency (AATD), which is a severe genetic disorder that affects lungs in adults and for which there is currently no cure. Being used, under special circumstances, as a medical treatment of AATD in the so-called "replacement" therapy (consisting in the intravenous infusion of the missing protein), AAT is a molecule with a lot of therapeutic importance. For this reason, interest in AAT purification from human plasma or its production in a recombinant version has grown considerably in recent years. This article retraces all technological advances that allowed the manufacturers to move from a few micrograms of partially purified AAT to several grams of highly purified protein. Moreover, the chronic augmentation and maintenance therapy in individuals with emphysema due to congenital AAT deficiency (current applications in the clinical setting) is also presented.


Subject(s)
alpha 1-Antitrypsin/isolation & purification , Animals , Genetic Therapy , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/therapeutic use , alpha 1-Antitrypsin Deficiency/drug therapy , alpha 1-Antitrypsin Deficiency/physiopathology
14.
Sci Rep ; 9(1): 8412, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31182789

ABSTRACT

Colour polymorphism occurs when two or more genetically-based colour morphs permanently coexist within an interbreeding population. Colouration is usually associated to other life-history traits (ecological, physiological, behavioural, reproductive …) of the bearer, thus being the phenotypic marker of such set of genetic features. This visual badge may be used to inform conspecifics and to drive those decision making processes which may contribute maintaining colour polymorphism under sexual selection context. The importance of such information suggests that other communication modalities should be recruited to ensure its transfer in case visual cues were insufficient. Here, for the first time, we investigated the potential role of proteins from femoral gland secretions in signalling colour morph in a polymorphic lizard. As proteins are thought to convey identity-related information, they represent the ideal cues to build up the chemical modality used to badge colour morphs. We found strong evidence for the occurrence of morph-specific protein profiles in the three main colour-morphs of the common wall lizard, which showed both qualitative and quantitative differences in protein expression. As lizards are able to detect proteins by tongue-flicking and vomeronasal organ, this result support the hypothesis that colour polymorphic lizards may use a multimodal signal to inform about colour-morph.


Subject(s)
Animal Structures/metabolism , Lizards/anatomy & histology , Lizards/metabolism , Pigmentation , Proteins/metabolism , Amino Acid Sequence , Animals , Electrophoresis, Gel, Two-Dimensional , Male , Mass Spectrometry , Peptides/chemistry , Peptides/metabolism
15.
High Throughput ; 8(1)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30781848

ABSTRACT

: The neutrophilic component in bronchiolitis obliterans syndrome (BOS, the main form of chronic lung rejection), plays a crucial role in the pathogenesis and maintenance of the disorder. Human Neutrophil Elastase (HNE), a serine protease responsible of elastin degradation whose action is counteracted by α1-antitrypsin (AAT), a serum inhibitor specific for this protease. This work aimed to investigate the relationship between HNE and AAT in bronchoalveolar lavage fluid (BALf) from stable lung transplant recipients and BOS patients to understand whether the imbalance between proteases and inhibitors is relevant to the development of BOS. To reach this goal a multidisciplinary procedure was applied which included: (i) the use of electrophoresis/western blotting coupled with liquid chromatography-mass spectrometric analysis; (ii) the functional evaluation of the residual antiprotease activity, and (iii) a neutrophil count.

16.
Electrophoresis ; 40(1): 151-164, 2019 01.
Article in English | MEDLINE | ID: mdl-30216498

ABSTRACT

Detection of proteins which may be potential biomarkers of disorders represents a big step forward in understanding the molecular mechanisms that underlie pathological processes. In this context proteomics plays the important role of opening a path for the identification of molecular signatures that can potentially assist in early diagnosis of several clinical disturbances. Aim of this report is to provide an overview of the wide variety of proteomic strategies that have been applied to the investigation of chronic obstructive pulmonary disease (COPD), a severe disorder that causes an irreversible damage to the lungs and for which there is no cure yet. The results in this area published over the past decade show that proteomics indeed has the ability of monitoring alterations in expression profiles of proteins from fluids/tissues of patients affected by COPD and healthy controls. However, these data also suggest that proteomics, while being an attractive tool for the identification of novel pathological mediators of COPD, remains a technique mainly generated and developed in research laboratories. Great efforts dedicated to the validation of these biological signatures will result in the proof of their clinical utility.


Subject(s)
Biomarkers , Proteomics/methods , Pulmonary Disease, Chronic Obstructive , Biomarkers/analysis , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Chromatography, Liquid , Electrophoresis, Capillary , Female , Humans , Male , Mass Spectrometry , Proteome/analysis , Proteome/metabolism , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/metabolism
17.
High Throughput ; 7(1)2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29485613

ABSTRACT

Very often the clinical features of rare neurodegenerative disorders overlap with those of other, more common clinical disturbances. As a consequence, not only the true incidence of these disorders is underestimated, but many patients also experience a significant delay before a definitive diagnosis. Under this scenario, it appears clear that any accurate tool producing information about the pathological mechanisms of these disorders would offer a novel context for their precise identification by strongly enhancing the interpretation of symptoms. With the advent of proteomics, detection and identification of proteins in different organs/tissues, aimed at understanding whether they represent an attractive tool for monitoring alterations in these districts, has become an area of increasing interest. The aim of this report is to provide an overview of the most recent applications of proteomics as a new strategy for identifying biomarkers with a clinical utility for the investigation of rare neurodegenerative disorders.

18.
Open Access Maced J Med Sci ; 6(1): 6-14, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29483970

ABSTRACT

BACKGROUND: Postmenopausal women experience undesired symptoms that adversely affect their quality of life. In the recent years, a specific 12 - week fractional CO2 laser treatment has been introduced, with highly significant relief of symptoms. AIM: The aim of this paper is the identification of the early modifications of structural components of atrophic vaginal mucosa induced by laser irradiation, which is responsible for the restorative processes. MATERIAL AND METHODS: We investigated by microscopical, ultrastructural and biochemical methods the modifications of the structural components of postmenopausal atrophic vaginal mucosa tissues after 1 hour following a single fractional laser CO2 application. RESULTS: In one hour, the mucosal epithelium thickens, with the maturation of epithelial cells and desquamation at the epithelial surface. In the connective tissue, new papillae indenting the epithelium with newly formed vessels penetrating them, new thin fibrils of collagen III are also formed in a renewed turnover of components due to the increase of metalloproteinase - 2. Specific features of fibroblasts support stimulation of their activity responsible of the renewal of the extracellular matrix, with an increase of mechanical support as connective tissue and stimulation of growth and maturation to epithelium thanks to new vessels and related factors delivered. CONCLUSION: We found the activation of regenerative mechanisms expressed both in the connective tissue - with the formation of new vessels, new papillae, and new collagen - and in the epithelium with the associated thickening and desquamation of cells at the mucosal surface.

19.
Electrophoresis ; 39(1): 160-178, 2018 01.
Article in English | MEDLINE | ID: mdl-28792066

ABSTRACT

Aim of this article is to focus the attention of the reader on the application of CE/MS and LC/MS to the analysis of human body fluids not currently used for the diagnosis of disorders and, for this reason, catalogued as "less/nonconventional" fluids, that is, tears, nasal secretions, cerumen, bronchoalveolar lavage fluid, sputum, exhaled breath condensate, nipple aspirate, breast milk, amniotic fluid, bile, seminal plasma, liposuction aspirate fluid, and synovial fluid. The pool of articles presented in this report demonstrates that, rather than being neglected, these fluids are an important resource for the evaluation of possible pathologic conditions. Thus, being a sort of mirror that reflects the normal internal characteristics and disease state of an individual, they benefit of an increasing appreciation. This review follows a previous report of this series and covers the latest developments in this field that have been published in specialist journals in the years 2015-2017.


Subject(s)
Body Fluids/chemistry , Animals , Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Clinical Chemistry Tests/methods , Electrophoresis, Capillary/methods , High-Throughput Screening Assays/methods , Human Body , Humans , Mass Spectrometry/methods , Proteomics , Sensitivity and Specificity
20.
Nutrients ; 9(6)2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28635634

ABSTRACT

Essential amino acids (EAAs) are nutritional substrates that promote body protein synthesis; thus we hypothesised that their supplementation may improve circulating albumin (Alb) and haemoglobin (Hb) in rehabilitative elderly patients following hip fractures (HF). Out of the 145 HF patients originally enrolled in our study, 112 completed the protocol. These subjects were divided into two randomised groups, each containing 56 patients. For a period of two months, one group (age 81.4 ± 8.1 years; male/female 27/29) received a placebo, and the other (age 83.1 ± 7.5 years; male/female 25/31) received 4 + 4 g/day oral EAAs. At admission, the prevalence of both hypoAlb (<3.5 g/dL) and hypoHb (<13 g/dL male, <12 g/dL female) was similar in the placebo group (64.3% hypoAlb, 66% hypoHb) and the treated group of patients (73.2% hypoAlb, 67.8% hypoHb). At discharge, however, the prevalence of hypoAlb had reduced more in EAAs than in placebo subjects (31.7% in EAAs vs. 77.8% in placebo; p < 0.001). There was a 34.2% reduction of anaemia in hypoHb in EAA subjects and 18.9% in placebo subjects, but the difference was not statistically significant. Oral supplementation of EAAs improves hypoAlb and, to a lesser extent, Hb in elderly rehabilitative subjects with hip fractures. Anaemia was reduced in more than one third of patients, which, despite not being statistically significant, may be clinically relevant.


Subject(s)
Amino Acids, Essential/administration & dosage , Dietary Supplements , Hemoglobins/metabolism , Hip Fractures/drug therapy , Inflammation/drug therapy , Serum Albumin/metabolism , Aged , Aged, 80 and over , Anemia, Iron-Deficiency/drug therapy , Caseins/administration & dosage , Diet , Female , Humans , Male , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...