Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 4(7): 526-33, 1997 Oct.
Article in English | MEDLINE | ID: mdl-14555965

ABSTRACT

The genes ced-3, ced-4 and ced-9 are central components in the cell death pathway of the nematode C. elegans. Ced-9, which functions to inhibit cell death, is homologous to the Bcl-2 family of mammalian anti-apoptotic genes. The ced-3 gene encodes a protein homologous to the caspases, a family of cysteine proteases involved in the execution of programmed cell death. It has recently been demonstrated that CED-4, an inducer of apoptosis for which no mammalian equivalent has been reported, can interact with CED-9 and Bcl-x(L). Here we confirm that CED-9 and CED-4 interact and using a series of deletion mutants, demonstrate that only short N-terminal deletions are tolerated in each molecule without loss-of-interaction. Two loss-of-function point mutations in different regions of CED-4 also lead to a significant loss of interaction suggesting further that the relevant interaction domains are not short linear sequences, but rather, are formed by more complex structural determinants in each molecule. Furthermore, we demonstrate that CED-4 not only interacts with Bcl-x(L) but also with its homologue, Bcl-2, and that the unstructured loop region present in Bcl-x(L) and Bcl-2 can regulate the CED-4 interaction. Lastly, we show that a BH3 peptide that can inhibit Bcl-2 family interactions also inhibits the interaction between Bcl-x(L) and CED-4.

SELECTION OF CITATIONS
SEARCH DETAIL
...