Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Technol Adv Mater ; 19(1): 336-369, 2018.
Article in English | MEDLINE | ID: mdl-29707072

ABSTRACT

Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

2.
Langmuir ; 33(6): 1507-1515, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28099813

ABSTRACT

A major issue that inhibits the large-scale fabrication of organic solar modules is the use of chlorinated solvents considered to be toxic and hazardous. In this work, composite particles of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) were obtained in water from a versatile and a ready-to-market methodology based on postpolymerization miniemulsification. Depending on the experimental conditions, size-controlled particles comprising both the electron donor and the electron acceptor were obtained and characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle neutron scattering (SANS), UV-visible absorption, and fluorescence spectroscopy. Intimate mixing of the two components was definitely asserted through PCDTBT fluorescence quenching in the composite nanoparticles. The water-based inks were used for the preparation of photovoltaic active layers that were subsequently integrated into organic solar cells.

3.
Opt Express ; 24(24): 27184-27198, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906293

ABSTRACT

Three-dimensional Langmuir-Blodgett films made of silica beads are theoretically and experimentally investigated in order to improve the relatively small efficiency of blue OLEDs. Using films made of 5 layers of beads, we fabricated OLEDs emitting at 476 nm, and measured a gain of around 40% on their external quantum efficiency. An optical model has been developed to accurately handle the fact that the organic emitting layer and the photonic extraction layer are separated by a distance greater than 1000 wavelength. The latter also permits to describe rapidly this three-dimensional optical OLED cavity, without redoing all the numerical simulations when the optical properties of the organic layers are changed (material index, thicknesses).

4.
ACS Macro Lett ; 3(11): 1134-1138, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-35610811

ABSTRACT

The effect of impurities on the optoelectronic and charge transport properties of semiconducting polymers was investigated through the performance of organic photovoltaics (OPVs) and organic field effect transistors (OFETs), respectively. A model representative semiconducting polymer, i.e., poly(3-hexylthiophene) (P3HT), was synthesized and purified using different methods such as precipitation, metals' complexation, and Soxhlet extraction. After the purification processes, each fraction was analyzed to determine its composition in metals (impurities) by various techniques. OFETs and OPVs fabricated from these purified polymer fractions were found to show different charge carrier properties and photovoltaic behaviors. The purest fraction which was obtained after Soxhlet extraction complemented by metals' complexation with the help of ethylenediamine and 15-crown-5 ether showed the best performance in both OPVs and OFETs.

5.
Adv Mater ; 24(16): 2196-201, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22447735

ABSTRACT

The addition of a block copolymer to the polymer/fullerene blend is a novel approach to the fabrication of organic solar cells. The block copolymer (P3HT-b-P4VP) is used as nanostructuring agent in the active layer. A significant enhancement of the cell efficiency is observed, in correlation with morphology control, both before (as-cast) and after the annealing process.


Subject(s)
Electric Power Supplies , Nanostructures/chemistry , Organic Chemicals/chemistry , Polymers/chemistry , Solar Energy , Temperature
6.
Chemistry ; 17(50): 14031-46, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22083904

ABSTRACT

Two novel terfluorenyl derivatives, 2,2'',7,7''-tetrakis(9,9-dioctyl-9H-fluoren-2-yl)dispiro[fluorene-9,11'-indeno-(2,1-a)-fluorene-12',9''-fluorene] ((2,1-a)-DST-IF) and 2,2'',7,7''-tetrakis(9,9-dioctyl-9H-fluoren-2-yl)dispiro- [fluorene-9,6'-indeno-(1,2-b)-fluorene-12',9''-fluorene] ((1,2-b)-DST-IF) have been synthesized by two different synthetic approaches. These terfluorenyl derivatives possess a different central indenofluorene core, namely (2,1-a)-indenofluorene or (1,2-b)-indenofluorene, which imposes two distinct geometry profiles, and different structural environments for the terfluorenyl fluorophores that translates into drastically different optical and electrochemical properties for (2,1-a)-DST-IF and (1,2-b)-DST-IF. These properties have been carefully studied through a combined experimental and theoretical approach. The (2,1-a)-DST-IF isomer has been successfully used as emitting layer in a blue single-layer small-molecule organic light-emitting diode (SMOLED) and appears as the first example of a blue emission arising from intramolecular terfluorenyl excimers. Regarding the importance of terfluorenyl derivatives in organic electronics, the present structure-properties relationship study, may open new avenues in the design of efficient blue fluorophores.

7.
J Phys Chem B ; 115(44): 12717-27, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-21939208

ABSTRACT

Herein we propose an approach toward the optimization of the photovoltaic performance of bulk heterojunctions by tuning the composition of the active layer with respect to the molecular weight of the semiconducting polymer. We used a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blend as a typical system and varied the molecular weight of the P3HT semiconducting polymer in order to determine its influence on the bulk heterojunction morphology as well as on the optoelectronic characteristics of the device. We have systematically mapped out the phase diagram for different molecular weight P3HTs blended with PCBM and observed the presence of a eutectic composition, which shifts to higher content of P3HT for lower molecular weight P3HTs. This shift inherent to the P3HT molecular weight is also apparent in the photovoltaic performance as the eutectic composition corresponds to the best of the photovoltaic properties. The P3HT molecular weight dependence of the eutectic composition is due to the molecular weight dependence of the P3HT crystallization behavior, which leads to dramatic morphological changes of the bulk heterojunction.

8.
Chemistry ; 17(45): 12631-45, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21954039

ABSTRACT

We report herein the incorporation of xanthenyl units into two extended π-conjugated phenylene systems, namely indenofluorene and pentaphenylene. Thus, dispiroxanthene-indenofluorene (DSX-IF) and dispiroxanthene-ladderpentaphenylene (DSX-LPP) have been designed and synthesized through short and efficient synthetic approaches. These two molecules possess a 3π-2-spiro architecture (3π-systems/2-spiro bridges), in which two xanthenyl cores are spirolinked to a π-conjugated backbone either indenofluorene for DSX-IF or pentaphenylene for DSX-LPP. The structural, electrochemical, and photophysical properties of these blue/violet emitters have been studied in detail and compared to those of their 'all carbon' analogues with spirofluorenyl cores instead of spiroxanthenyl cores, namely dispirofluorene-indenofluorene (DSF-IF) and dispirofluorene-ladderpentaphenylene (DSF-LPP), previously reported in the literature. Finally, the application of DSX-IF and DSX-LPP as new light-emitting materials in nondoped organic light emitting diodes is reported. A detailed optical study of the different electroluminescence spectra is notably presented, with an emphasis 1) on the origin of the low-energy emission band observed in the case of DSX-LPP and 2) on the unexpected optical contribution of the well-known hole-transporting-layer NPB (N,N'-di(naphtyl)-N,N'-diphenyl(1,1'-biphenyl)-4,4'-diamine).

9.
Org Lett ; 13(16): 4418-21, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21790139

ABSTRACT

Through a rational design, a novel Donor-Acceptor π-conjugated (D-π-A) blue fluorescent indenofluorene dye, DA-DSF-IF, has been synthesized for application in single-layer Small Molecule Organic Light Emitting Diodes (SMOLEDs). This new blue emitter possesses bipolar properties as well as good morphological and emission color stabilities and has been successfully used in a blue emitting single-layer SMOLED, with performances impressively magnified compared to a nonbipolar indenofluorene emitter.

10.
Org Lett ; 12(3): 452-5, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20039631

ABSTRACT

Through an expedient synthesis, a novel blue emitter, DiSpiroXanthene-IndenoFluorene (DSX-IF) has been designed and synthesized. DSX-IF possesses good morphological and color stability upon heating, has a high quantum yield, and may be easily polymerized through anodic oxidation. Small molecule organic light emitting diodes (SMOLEDs), using this promising new dixanthene derivative as a blue emissive layer, exhibit a maximum luminance of ca. 3800 Cd.m(-2) with a luminous efficiency of 1 Cd.A(-1).

11.
Chemistry ; 14(36): 11328-42, 2008.
Article in English | MEDLINE | ID: mdl-19009573

ABSTRACT

New routes to ladder-type phenylene materials 1 and 2 are described. The oligomers 1 and 2, which possess a "3pi-2spiro" architecture, have been synthesized by using extended diketone derivatives 3 and 10 as key intermediates. The physicochemical properties of the new blue-light emitter 2 were studied in detail and compared with those of the less-extended 1. Owing to the recent development of fluorenone derivatives and their corresponding more conjugated analogues as potential electron-transport materials in organic light-emitting diodes (OLEDs) and as n-type materials for photovoltaic applications, we also report herein the thermal, optical and electrochemical behavior of the key intermediates, diketones 3 and 10. Finally, the application of dispiro 2 as a new light-emitting material in OLEDs is reported.

12.
Chemistry ; 13(36): 10055-69, 2007.
Article in English | MEDLINE | ID: mdl-18022969

ABSTRACT

A series of new dispiro[fluorene-9',6,9'',12-indeno[1,2b]fluorenes] (DSF-IFs) has been synthesised. These new building blocks for blue-light-emitting devices and electroactive polymers combine indenofluorene (IF) and spirobifluorene (SBF) properties. We report here our synthetic investigations towards these new structures and their thermal, structural, photophysical and electrochemical properties. These properties have been compared to those of IF and SBF. We also report the anodic oxidation of DSF-IFs that leads to the formation of non-soluble transparent three-dimensional polymers. The structural and electrochemical behaviour of these polymers has been studied. The first application of these building blocks as new blue-light-emitting materials in organic light-emitting diodes (OLED) is also reported.

13.
J Am Chem Soc ; 128(14): 4892-901, 2006 Apr 12.
Article in English | MEDLINE | ID: mdl-16594726

ABSTRACT

A new approach to control molecular aggregation of pi-conjugated chromophores in the solid state has been investigated. Our strategy was to use a modifiable bulky fragment which should induce a J-aggregation and offer the possibility to reach an H-aggregation upon its chemical modification by lateral slip of pi-conjugated molecules. The chosen fragment for that purpose was the hydrolyzable triethoxysilane function (Si(OEt)3). Our objective was to design and synthesize electroluminescent or solar cell hybrid organic-inorganic materials by the sol-gel process applied to a bifunctionalized silane. With this intention, the synthesis of the sol-gel processable phenylenevinylenediimide silsesquioxane 6 was accomplished and the study of spin-coated thin films of the pure silane precursor subjected or not to the sol-gel process has been carried out. Optical properties of 6 are consistent with the formation of J-aggregates in the solid state due to the steric hindrance introduced by the triethoxysilane units. Conversely, the spectroscopic behavior observed for the hybrid film 6F is attributed to an H-aggregation corresponding to a "card pack" orientation of the distyrylbenzeneimide chromophores in the compressed silicate network. Morevover, 6 and 6F also exhibited different electronic behaviors: light-emitting diodes exhibited high brightness with the native precursor 6 and almost no light output with the sol-gel processed silsesquioxane 6F. Photovoltaic cells showed the opposite behavior with low photocurrent generation in the precursor case and higher photocurrents with the sol-gel processed layers. These results provide a deeper understanding of the present self-assembly process that is strongly governed by the molecular packing of the oligosiloxane precursor.

SELECTION OF CITATIONS
SEARCH DETAIL
...