Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(10): 14975-14986, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34623586

ABSTRACT

Pheromones are increasingly used as alternatives to pesticides to protect vineyards against L. botrana, a key grape pest. To diffuse (7E,9Z)-7,9-dodecadien-1-ylacetate, the L. botrana pheromone, passive, or aerosol dispensers are commonly applied. This paper deals with another method based on spraying an aqueous formulation, Lobesia Pro Spray, containing the pheromone encapsulated in a resin. The objectives were to assess the ability of vine leaves to act as pheromone dispensers and to check that encapsulation protects the plant from pheromone penetration. Laboratory testing based on an emission cell combined with airborne pheromone measurements by active sampling on sorbent tubes followed by ATD-GC-MS analysis was developed to accurately characterise the release of the pheromone into the air. Release kinetics analysis performed on the vine leaves showed a high pheromone release (about 30% of the sprayed quantity) the first day of the test. The release rate then decreased rapidly to reach about 650 mg/day/ha after 4 days. Kinetic modelling showed that it would be possible to maintain an effective airborne concentration of pheromone for approximately 12 days. Release tests were also carried out on glass, PVC and blotting paper. The results obtained showed that the vine leaves behaved as a non-absorbent material, implying that the pheromone used in the Lobesia Pro Spray formulation did not penetrate the plant. These first results prove the feasibility of using vine leaves as pheromone dispensers for a sprayed formulation and the ability to optimise the treatment conditions (dose and frequency) through laboratory testing.


Subject(s)
Moths , Sex Attractants , Animals , Capsules , Insect Control , Pest Control, Biological , Pheromones , Plant Leaves , Sexual Behavior, Animal
2.
Environ Sci Pollut Res Int ; 24(31): 24156-24166, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28884255

ABSTRACT

Basing on the material emission data obtained in a test chamber, chemical mass balance (CMB) was used to assess the source apportionment of volatile organic compound (VOC) concentrations in three newly built timber frame houses. CMB has been proven to be able to discriminate the source contributions for two contrasted environmental conditions (with and without ventilation). The shutdown of the ventilation system caused an increase in the VOC concentrations due to the increased contribution of indoor surface materials like the door material and furniture explaining together over 65% of total VOCs. While the increase in formaldehyde concentration is mainly due to furniture (contribution of 70%), the increase in α-pinene concentration is almost exclusively attributable to the emission of door material (up to 84%). The apportionment of VOC source contributions appears as highly dependent on the position of source materials in the building (surface materials or internal materials) and the ventilation conditions explaining that the concentrations of compounds after the shutdown of ventilation system do not increase in equivalent proportion. Knowledge of indoor sources and its contributions in real conditions may help in the selection of materials and in the improvement of construction operations to reduce the indoor air pollution.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Exposure , Housing , Volatile Organic Compounds/analysis , Construction Materials , Environmental Monitoring , Models, Chemical , Wood/chemistry
3.
Anal Bioanal Chem ; 409(26): 6245-6252, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28808738

ABSTRACT

The behaviour of a new formaldehyde diffusive sampler using an optical chemical sensor with respect to high humidity conditions is examined in controlled atmospheres. Five prototypes of the radial diffusion sampler having the same chemical sensor and different designs were tested. In addition, a set of experiments were performed on the chemical sensor to characterise its efficiency of trapping water vapour in the absence and in the presence of the reactants, Fluoral-P and formaldehyde. Differences in humidity interference between the five diffusive sampler prototypes were studied and discussed. From all the results obtained, it was shown that the prototype LDE1.4 combining a small diffusion slot, a reduced internal volume and a sensor shifted upwards from the diffusion slot provided formaldehyde measurements least affected by humidity up to 80% RH at 20 °C. This new type of diffusive sampler with on-site direct reading is intended to ultimately replace conventional passive samplers with DNPH requiring offset laboratory analyses.

4.
Anal Bioanal Chem ; 408(8): 2147-57, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26847188

ABSTRACT

New passive samplers using a sensor consisting of a sol-gel matrix entrapping Fluoral-P as sampling media were developed for the determination of formaldehyde in indoor air. The reaction between Fluoral-P and formaldehyde produces a colored compound which is quantified on-site by means of a simple optical reading module. The advantages of this sensor are selectivity, low cost, ppb level limit of detection, and on-site direct measurement. In the development process, it is necessary to determine the sampling rate, a key parameter that cannot be directly assessed in the case of diffusive samplers using optical chemical sensor. In this study, a methodology combining experimental tests and numerical modeling is proposed and applied at five different radial diffusive samplers equipped with the same optical chemical sensor to assess the sampled material flows and sampling rates. These radial diffusive samplers differ in the internal volume of the sampler (18.97 and 6.14 cm(3)), the position of sensor inside the sampler (in front and offset of 1.2 cm above the membrane) and the width of the diffusion slot (1.4 and 5.9 mm). The influences of these three parameters (internal volume, position of sensor inside the sampler, and width of the diffusion slot) were assessed and discussed with regard to the formaldehyde sampling rate and water uptake by sensor (potential interference of measure). Numerical simulations based on Fick's laws are in agreement with the experimental results and provide to estimate the effective diffusion coefficient of formaldehyde through the membrane (3.50 × 10(-6) m(2) s(-1)). Conversion factors between the sensor response, sampled formaldehyde mass and sampling rate were also assessed.

SELECTION OF CITATIONS
SEARCH DETAIL
...