Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Comp Oncol ; 21(4): 634-645, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37709554

ABSTRACT

The Hippo signalling pathway is involved in breast cancer and canine mammary tumour (CMT). This study sought to evaluate the efficacy of fluvastatin on the Hippo pathway and its main effectors, YAP and TAZ, in vivo in a murine CMT cell line xenograft model. On treatment day 1, mice were divided into four groups: vehicle, fluvastatin, doxorubicin or a combination therapy. Tumour volumes were monitored with callipers and tissues harvested on day 28th of treatment. Histopathological examination of tumour tissues and major organs was performed as well as tumour evaluation of necrosis, apoptosis, cellular proliferation, expression of YAP, TAZ and the mRNA levels of four of their target genes (CTGF, CYR61, ANKRD1 and RHAMM2). Results showed a statistically significant variation in tumour volumes only for the combination therapy and final tumour weight only for the doxorubicin group compared to control. There was no significant difference in tumour necrosis, expression of CC3, ki-67, YAP and TAZ measured by immunohistochemistry and in the mRNA levels of the target genes. Unexpectedly, lung metastases were found in the control group (9) and not in the fluvastatin treated group (7). In addition, mass spectrometry-based quantification of fluvastatin reveals concentrations comparable to levels reported to exert therapeutic effects. This study shows that fluvastatin tumours concentration reached therapeutic levels without having an effect on the hippo pathway or various tumour parameters. Interestingly, only the control group had lung metastases. This study is the first to explore the repurposing of statins for cancer treatment in veterinary medicine.


Subject(s)
Breast Neoplasms , Dog Diseases , Lung Neoplasms , Mammary Glands, Human , Mammary Neoplasms, Animal , Humans , Animals , Dogs , Mice , Female , Fluvastatin/therapeutic use , Transcription Factors/metabolism , Heterografts , Mammary Glands, Human/metabolism , Cell Line, Tumor , Dog Diseases/drug therapy , Dog Diseases/metabolism , Breast Neoplasms/veterinary , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/veterinary , Necrosis/veterinary , Doxorubicin , RNA, Messenger
3.
Vet Comp Oncol ; 20(2): 437-448, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34881506

ABSTRACT

Canine mammary tumours (CMTs) are the most common neoplasms in intact bitches, and few chemotherapeutic options are available for highly invasive and metastatic tumours. Recent studies have shown the potential involvement of dysregulated Hippo signalling in CMT development and progression. Statins can activate the Hippo pathway by blocking protein geranylgeranylation (GGylation), resulting in decreased expression and activity of the transcriptional co-activators YAP and TAZ. In this study, we therefore sought to determine if statins could exert anti-cancer effects in CMT cells. Our results demonstrate that Atorvastatin and Fluvastatin are cytotoxic to two CMT cell lines (CMT9 and CMT47), with ED50 values ranging from 0.95 to 23.5 µM. Both statins acted to increase apoptosis and promote cell cycle arrest. Both statins also decreased YAP and TAZ expression and reduced the mRNA levels of key Hippo transcriptional target genes known to be involved in breast cancer progression and chemoresistance (CYR61, CTGF and RHAMM). Moreover, both statins effectively inhibited cell migration and anchorage independent growth, but did not influence matrix invasion. Taken together, our results demonstrate for the first time that statins act upon the Hippo pathway in CMT cells to counteract several molecular and cellular hallmarks of cancer. These findings suggest that targeting the Hippo pathway with statins represents a novel and promising approach for the treatment canine mammary gland cancers.


Subject(s)
Dog Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mammary Neoplasms, Animal , Animals , Dog Diseases/drug therapy , Dog Diseases/metabolism , Dogs , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/metabolism , Phosphoproteins/genetics , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...