Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 64(7): 075008, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30754030

ABSTRACT

3D breast modelling for 2D and 3D breast x-ray imaging would benefit from the availability of digital and physical phantoms that reproduce accurately the complexity of the breast anatomy. While a number of groups have produced digital phantoms with increasing level of complexity, physical phantoms reproducing that software approach have been scarcely developed. One possibility is offered by 3D printing technology. This implies the assessment of the energy dependent absorption index ß of 3D printing materials for absorption based imaging, as well as the assessment of the refractive index decrement, δ, of the printing material, for phase contrast imaging studies, at the energies of interest for breast imaging. In this work we set-up a procedure and performed a series of measurements (at 30, 45 and 60 keV, at the European Synchrotron Radiation Facility) for assessing the relative value of δ with respect to that of breast tissues, for twelve 3D printing materials. The method included propagation based phase contrast 2D imaging and retrieval of the estimated phase shift map, using the Paganin's algorithm. Breast glandular, adipose and skin tissues were used as reference materials of known ratio δ/ß. A percentage difference Δδ was introduced to assess the suitability of the printing materials as tissue substitutes. The accuracy of the method (about 4%) was assessed based on the properties of PMMA and Nylon, acting as gold standard. Results show that, for the above photon energies, ABS is a good substitute for adipose tissue, Hybrid as a substitute of the glandular tissue and PET-G for simulating the skin. We plan to realize a breast phantom manufactured by fused deposition modelling (FDM) technology using ABS, Hybrid and PET-G as substitutes of the glandular and skin tissue and a second phantom by stereolithography (SLA) technology with the resins Flex, Tough and Black.


Subject(s)
Breast/diagnostic imaging , Microscopy, Phase-Contrast/methods , Phantoms, Imaging , Printing, Three-Dimensional/instrumentation , Refractometry , Software , Adipose Tissue/diagnostic imaging , Female , Humans , Skin/diagnostic imaging
2.
Phys Med Biol ; 63(14): 14NT03, 2018 07 19.
Article in English | MEDLINE | ID: mdl-29938688

ABSTRACT

Clinical studies performed using computer simulation are inexpensive, flexible methods that can be used to study aspects of a proposed imaging technique prior to a full clinical study. Typically, lesions are simulated into (experimental) data to assess the clinical potential of new methods or algorithms. In grating-based phase-contrast imaging (GB-PCI), full wave simulations are, however, computationally expensive due to the high periodicity of the gratings and therefore not practically applicable when large data sets are required. This work describes the development of a hybrid modelling platform that combines analytical and empirical input data for a more rapid simulation of GB-PCI images with little loss of accuracy. Instead of an explicit implementation of grating details, measured summary metrics (i.e. visibility, flux, noise power spectra, presampling modulation transfer function) are applied in order to generate transmission and differential phase images with large fields of view. Realistic transmission and differential phase images were obtained with good quantitative accuracy. The different steps of the simulation framework, as well as the methods to measure the summary metrics, are discussed in detail such that the technique can be easily customized for a given system. The platform offers a fast, accurate alternative to full wave simulations when the focus switches from grating/system design and set up to the generation of GB-PCI images for an established system.


Subject(s)
Algorithms , Computer Simulation , Heart/diagnostic imaging , Microscopy, Phase-Contrast/methods , Models, Theoretical , Phantoms, Imaging , Humans , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...