Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 83(5): 671-9, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22202439

ABSTRACT

We had previously reported that gallium (Ga) inhibited both the differentiation and resorbing activity of osteoclasts in a dose-dependent manner. To provide new insights into Ga impact on osteoclastogenesis, we investigated here the molecular mechanisms of Ga action on osteoclastic differentiation of monocytes upon Rankl treatment. We first observed that Ga treatment inhibited the expression of Rankl-induced early differentiation marker genes, while the same treatment performed subsequently did not modify the expression of late differentiation marker genes. Focusing on the early stages of osteoclast differentiation, we observed that Ga considerably disturbed both the initial induction as well as the autoamplification step of Nfatc1 gene. We next demonstrated that Ga strongly up-regulated the expression of Traf6, p62 and Cyld genes, and we observed concomitantly an inhibition of IκB degradation and a blockade of NFκB nuclear translocation, which regulates the initial induction of Nfatc1 gene expression. In addition, Ga inhibited c-Fos gene expression, and subsequently the auto-amplification stage of Nfatc1 gene expression. Lastly, considering calcium signaling, we observed upon Ga treatment an inhibition of calcium-induced Creb phosphorylation, as well as a blockade of gadolinium-induced calcium entry through TRPV-5 calcium channels. We identify for the first time Traf6, p62, Cyld, IκB, NFκB, c-Fos, and the calcium-induced Creb phosphorylation as molecular targets of Ga, this tremendously impacting the expression of the master transcription factor Nfatc1. In addition, our results strongly suggest that the TRPV-5 calcium channel, which is located within the plasma membrane, is a target of Ga action on human osteoclast progenitor cells.


Subject(s)
Gallium/pharmacology , Monocytes/cytology , Monocytes/drug effects , Osteoclasts/cytology , Animals , Calcium Signaling/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation , Humans , Mice , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , Real-Time Polymerase Chain Reaction
2.
J Biomed Mater Res A ; 80(1): 66-74, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16958048

ABSTRACT

Tissue engineering strategies, based on developing three-dimensional scaffolds capable of transferring autologous chondrogenic cells, holds promise for the restoration of damaged cartilage. In this study, the authors aimed at determining whether a recently developed silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel can be a suitable scaffold for human nasal chondrocytes (HNC)-based cartilage engineering. Methyltetrazolium salt assay and cell counting experiments first revealed that Si-HPMC enabled the proliferation of HNC. Cell tracker green staining further demonstrated that HNC were able to form nodular structures in this three-dimensional scaffold. HNC phenotype was then assessed by RT-PCR analysis of type II collagen and aggrecan expression as well as alcian blue staining of extracellular matrix. Our data indicated that Si-HPMC allowed the maintenance and the recovery of a chondrocytic phenotype. The ability of constructs HNC/Si-HPMC to form a cartilaginous tissue in vivo was finally investigated after 3 weeks of implantation in subcutaneous pockets of nude mice. Histological examination of the engineered constructs revealed the formation of a cartilage-like tissue with an extracellular matrix containing glycosaminoglycans and type II collagen. The whole of these results demonstrate that Si-HPMC hydrogel associated to HNC is a convenient approach for cartilage tissue engineering.


Subject(s)
Cartilage/metabolism , Chondrocytes/metabolism , Hydrogels , Methylcellulose/analogs & derivatives , Tissue Engineering , Aggrecans/biosynthesis , Cartilage/cytology , Cartilage/injuries , Cell Culture Techniques , Cells, Cultured , Chondrocytes/cytology , Collagen Type II/biosynthesis , Extracellular Matrix/metabolism , Gene Expression Regulation , Humans , Hydrogels/chemistry , Hypromellose Derivatives , Methylcellulose/chemistry , Nasal Mucosa/metabolism , Nose/cytology
3.
Biomaterials ; 26(33): 6643-51, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15950277

ABSTRACT

Articular cartilage has limited intrinsic repair capacity. In order to promote cartilage repair, the amplification and transfer of autologous chondrocytes using three-dimensional scaffolds have been proposed. We have developed an injectable and self-setting hydrogel consisting of hydroxypropyl methylcellulose grafted with silanol groups (Si-HPMC). The aim of the present work is to assess both the in vitro cytocompatibility of this hydrogel and its ability to maintain a chondrocyte-specific phenotype. Primary chondrocytes isolated from rabbit articular cartilage (RAC) and two human chondrocytic cell lines (SW1353 and C28/I2) were cultured into the hydrogel. Methyl tetrazolium salt (MTS) assay and cell counting indicated that Si-HPMC hydrogel did not affect respectively chondrocyte viability and proliferation. Fluorescent microscopic observations of RAC and C28/I2 chondrocytes double-labeled with cell tracker green and ethidium homodimer-1 revealed that chondrocytes proliferated within Si-HPMC. Phenotypic analysis (RT-PCR and Alcian blue staining) indicates that chondrocytes, when three-dimensionnally cultured within Si-HPMC, expressed transcripts encoding type II collagen and aggrecan and produced sulfated glycosaminoglycans. These results show that Si-HPMC allows the growth of differentiated chondrocytes. Si-HPMC therefore appears as a potential scaffold for three-dimensional amplification and transfer of chondrocytes in cartilage tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Methylcellulose/analogs & derivatives , Silanes/chemistry , Animals , Cartilage/metabolism , Cartilage, Articular/cytology , Cell Proliferation , Cell Survival , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Dimerization , Glycosaminoglycans/chemistry , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hypromellose Derivatives , Methylcellulose/chemistry , Microscopy, Fluorescence , Phenotype , Polymerase Chain Reaction , RNA, Messenger/metabolism , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tissue Engineering
4.
J Bone Miner Res ; 18(8): 1430-42, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12929932

ABSTRACT

UNLABELLED: Involvement of Pi and Ca in chondrocyte maturation was studied because their levels increase in cartilage growth plate. In vitro results showed that Pi increases type X collagen expression, and together with Ca, induces apoptosis-associated mineralization, which is similar to that analyzed in vivo, thus suggesting a role for both ions and apoptosis during endochondral ossification. INTRODUCTION: During endochondral ossification, regulation of chondrocyte maturation governs the growth of the cartilage plate. The role of inorganic phosphate (Pi), whose levels strongly increase in the hypertrophic zone of the growth plate both in intra- and extracellular compartments, on chondrocyte maturation and mineralization of the extracellular matrix has not yet been deciphered. MATERIALS AND METHODS: The murine chondrogenic cell line ATDC5 was used. Various Pi and calcium concentrations were obtained by adding NaH2PO4/Na2HPO4 and CaCl2, respectively. Mineralization was investigated by measuring calcium content in cell layer by atomic absorption spectroscopy and by analyzing crystals with transmission electron microscopy and Fourier transform infrared microspectroscopy. Cell differentiation was investigated at the mRNA level (reverse transcriptase-polymerase chain reaction [RT-PCR] analysis). Cell viability was assessed by methyl tetrazolium salt (MTS) assay and staining with cell tracker green (CTG) and ethidium homodimer-(EthD-1). Apoptosis was evidenced by DNA fragmentation and caspase activation observed in confocal microscopy, as well as Bcl-2/Bax mRNA ratio (RT-PCR analysis). RESULTS: We showed that Pi increases expression of the hypertrophic marker, type X collagen. When calcium concentration is slightly increased (like in cartilage growth plate), Pi also induces matrix mineralization that seems identical to that observed in murine growth plate cartilage and stimulates apoptosis of differentiated ATDC5 cells, with a decrease in Bcl-2/Bax mRNA ratio, DNA fragmentation, characteristic morphological features, and caspase-3 activation. In addition, the use of a competitive inhibitor of phosphate transport showed that these effects are likely dependent on Pi entry into cells through phosphate transporters. Finally, inhibition of apoptosis with ZVAD-fmk reduces pi-induced mineralization. CONCLUSIONS: These findings suggest that Pi regulates chondrocyte maturation and apoptosis-associated mineralization, highlighting a possible role for Pi in the control of skeletal development.


Subject(s)
Apoptosis/drug effects , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Phosphates/pharmacology , Animals , Caspases/metabolism , Cell Line, Tumor , Chondrocytes/enzymology , Chondrocytes/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...