Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 2263194, 2022.
Article in English | MEDLINE | ID: mdl-35265709

ABSTRACT

In this paper, we develop a healthcare biclustering model in the field of healthcare to reduce the inconveniences linked to the data clustering on gene expression. The present study uses two separate healthcare biclustering approaches to identify specific gene activity in certain environments and remove the duplication of broad gene information components. Moreover, because of its adequacy in the problem where populations of potential solutions allow exploration of a greater portion of the research area, machine learning or heuristic algorithm has become extensively used for healthcare biclustering in the field of healthcare. The study is evaluated in terms of average match score for nonoverlapping modules, overlapping modules through the influence of noise for constant bicluster and additive bicluster, and the run time. The results show that proposed FCM blustering method has higher average match score, and reduced run time proposed FCM than the existing PSO-SA and fuzzy logic healthcare biclustering methods.


Subject(s)
Algorithms , Gene Expression Profiling , Cluster Analysis , Delivery of Health Care , Gene Expression , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods
2.
Biomed Res Int ; 2022: 5038851, 2022.
Article in English | MEDLINE | ID: mdl-35187166

ABSTRACT

Remote health monitoring can help prevent disease at the earlier stages. The Internet of Things (IoT) concepts have recently advanced, enabling omnipresent monitoring. Easily accessible biomarkers for neurodegenerative disorders, namely, Alzheimer's disease (AD) are needed urgently to assist the diagnoses at its early stages. Due to the severe situations, these systems demand high-quality qualities including availability and accuracy. Deep learning algorithms are promising in such health applications when a large amount of data is available. These solutions are ideal for a distributed blockchain-based IoT system. A good Internet connection is critical to the speed of these system responses. Due to their limited processing capabilities, smart gateway devices cannot implement deep learning algorithms. In this paper, we investigate the use of blockchain-based deep neural networks for higher speed and delivery of healthcare data in a healthcare management system. The study exhibits a real-time health monitoring for classification and assesses the response time and accuracy. The deep learning model classifies the brain diseases as benign or malignant. The study takes into account three different classes to predict the brain disease as benign or malignant that includes AD, mild cognitive impairment, and normal cognitive level. The study involves a series of processing where most of the data are utilized for training these classifiers and ensemble model with a metaclassifier classifying the resultant class. The simulation is conducted to test the efficacy of the model over that of the OASIS-3 dataset, which is a longitudinal neuroimaging, cognitive, clinical, and biomarker dataset for normal aging and AD, and it is further trained and tested on the UDS dataset from ADNI. The results show that the proposed method accurately (98%) responds to the query with high speed retrieval of classified results with an increased training accuracy of 0.539 and testing accuracy of 0.559.


Subject(s)
Alzheimer Disease/classification , Alzheimer Disease/therapy , Blockchain , Deep Learning , Big Data , Humans , Internet of Things
SELECTION OF CITATIONS
SEARCH DETAIL
...