Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36977047

ABSTRACT

In recent years, polypropylene microplastic has persisted in freshwater ecosystems and biota, forming ever-growing threats. This research aimed to prepare polypropylene microplastics and evaluate their toxicity to the filter feeder Oreochromis mossambicus. In this research, fish were given a dietary supplement of polypropylene microplastics at 100, 500, and 1000 mg/kg for acute (96 h) and sub-acute (14 days) durations to assess toxic effects on liver tissues. FTIR results revealed the presence of polypropylene microplastic in their digestion matter. The ingestion of microplastics in O. mossambicus led to fluctuations in homeostasis, an upsurge in reactive oxygen species (ROS) levels, an alteration in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and glutathione peroxidase (GPx); a promotion in the oxidation of lipid molecules; and a denaturation in the neurotransmitter enzyme acetylcholinesterase (AChE). Our data indicated that sustained exposure to microplastics (14 days) produced a more severe threat than acute exposure (96 h). In addition, higher apoptosis, DNA damage (genotoxicity), and histological changes were found in the liver tissues of the sub-acute (14 days) microplastics-treated groups. This research indicated that the constant ingestion of polypropylene microplastics is detrimental to freshwater environments and leads to ecological threats.

2.
J Fluoresc ; 27(6): 2159-2168, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28887595

ABSTRACT

The interaction of n-(4-hydroxyphenyl)-imidazole with p-sulfonatocalix[4]arene is studied using fluorescence technique. The quenching of fluorescence intensity explains the efficiency of binding via binding constant and quenching constant. The excited state lifetime of n-(4-hydroxyphenyl)-imidazole is decreased upon interaction with p-sulfonatocalix[4]arene. The cyclic voltametric studies emphasized the interaction of n-(4-hydroxyphenyl)-imidazole with p-sulfonatocalix[4]arene. Quantum chemical calculations are carried out to study the interactions as well as charge transfer between the host and the guest upon complexation. The simulations revealed that the n-(4-hydroxyphenyl)-imidazole interacts with p-sulfonatocalix[4]arene with horizontal orientation with in the p-sulfonatocalix[4]arene cavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...