Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; (31): 3927-9, 2005 Aug 21.
Article in English | MEDLINE | ID: mdl-16075074

ABSTRACT

The introduction of a stereogenic center by a stereospecific synthesis into an optically active, donor-acceptor pretzelane, that exhibits helicity as well as fixed chirality, leads to a marked preference for one conformational diastereoisomer over the other in both acetone and dimethylsulfoxide that can be understood from computational models.

2.
J Am Chem Soc ; 127(27): 9745-59, 2005 Jul 13.
Article in English | MEDLINE | ID: mdl-15998079

ABSTRACT

Two switchable, palindromically constituted bistable [3]rotaxanes have been designed and synthesized with a pair of mechanically mobile rings encircling a single dumbbell. These designs are reminiscent of a "molecular muscle" for the purposes of amplifying and harnessing molecular mechanical motions. The location of the two cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings can be controlled to be on either tetrathiafulvalene (TTF) or naphthalene (NP) stations, either chemically ((1)H NMR spectroscopy) or electrochemically (cyclic voltammetry), such that switching of inter-ring distances from 4.2 to 1.4 nm mimics the contraction and extension of skeletal muscle, albeit on a shorter length scale. Fast scan-rate cyclic voltammetry at low temperatures reveals stepwise oxidations and movements of one-half of the [3]rotaxane and then of the other, a process that appears to be concerted at room temperature. The active form of the bistable [3]rotaxane bears disulfide tethers attached covalently to both of the CBPQT(4+) ring components for the purpose of its self-assembly onto a gold surface. An array of flexible microcantilever beams, each coated on one side with a monolayer of 6 billion of the active bistable [3]rotaxane molecules, undergoes controllable and reversible bending up and down when it is exposed to the synchronous addition of aqueous chemical oxidants and reductants. The beam bending is correlated with flexing of the surface-bound molecular muscles, whereas a monolayer of the dumbbell alone is inactive under the same conditions. This observation supports the hypothesis that the cumulative nanoscale movements within surface-bound "molecular muscles" can be harnessed to perform larger-scale mechanical work.


Subject(s)
Biomimetic Materials/chemistry , Muscles/physiology , Disulfides/chemistry , Electrochemistry , Molecular Structure , Rotaxanes/chemistry , Spectrum Analysis , Static Electricity
4.
Chemistry ; 10(24): 6558-64, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15562404

ABSTRACT

The influences of different physical environments on the thermodynamics associated with one key step in the switching mechanism for a pair of bistable catenanes and a pair of bistable rotaxanes have been investigated systematically. The two bistable catenanes are comprised of a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring, or its diazapyrenium-containing analogue, that are interlocked with a macrocyclic polyether component that incorporates the strong tetrathiafulvalene (TTF) donor unit and the weaker 1,5-dioxynaphthalene (DNP) donor unit. The two bistable rotaxanes are comprised of a CBPQT4+ ring, interlocked with a dumbbell component in which one incorporates TTF and DNP units, whereas the other incorporates a monopyrrolotetrathiafulvalene (MPTTF) donor and a DNP unit. Two consecutive cycles of a variable scan rate cyclic voltammogram (10-1500 mV s(-1)) performed on all of the bistable switches (approximately 1 mM) in MeCN electrolyte solutions (0.1 M tetrabutylammonium hexafluorophosphate) across a range of temperatures (258-303 K) were recorded in a temperature-controlled electrochemical cell. The second cycle showed different intensities of the two features that were observed in the first cycle when the cyclic voltammetry was recorded at fast scan rates and low temperatures. The first oxidation peak increases in intensity, concomitant with a decrease in the intensity of the second oxidation peak. This variation changed systematically with scan rate and temperature and has been assigned to the molecular mechanical movements within the catenanes and rotaxanes of the CBPQT4+ ring from the DNP to the TTF unit. The intensities of each peak were assigned to the populations of each co-conformation, and the scan-rate variation of each population was analyzed to obtain kinetic and thermodynamic data for the movement of the CBPQT4+ ring. The Gibbs free energy of activation at 298 K for the thermally activated movement was calculated to be 16.2 kcal mol(-1) for the rotaxane, and 16.7 and 19.2 kcal mol(-1) for the bipyridinium- and diazapyrenium-based bistable catenanes, respectively. These values differ from those obtained for the shuttling and circumrotational motions of degenerate rotaxanes and catenanes, respectively, indicating that the detailed chemical structure influences the rates of movement. In all cases, when the same bistable compounds were characterized in an electrolyte gel, the molecular mechanical motion slowed down significantly, concomitant with an increase in the activation barriers by more than 2 kcal mol(-1). Irrespective of the environment--solution, self-assembled monolayer or solid-state polymer gel--and of the molecular structure--rotaxane or catenane--a single and generic switching mechanism is observed for all bistable molecules.

5.
Chemistry ; 10(24): 6375-92, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15532018

ABSTRACT

In pursuit of a neutral bistable [2]rotaxane made up of two tetraarylmethane stoppers--both carrying one isopropyl and two tert-butyl groups located at the para positions on each of three of the four aryl rings--known to permit the slippage of the pi-electron-donating 1,5-dinaphtho[38]crown-10 (1/5DNP38C10) at the thermodynamic instigation of pi-electron-accepting recognition sites, in this case, pyromellitic diimide (PmI) and 1,4,5,8-naphthalenetetracarboxylate diimide (NpI) units separated from each other along the rod section of the rotaxane's dumbbell component, and from the para positions of the fourth aryl group of the two stoppers by pentamethylene chains, a modular approach was employed in the synthesis of the dumbbell-shaped compound NpPmD, as well as of its two degenerate counterparts, one (PmPmD) which contains two PmI units and the other (NpNpD) which contains two NpI units. The bistable [2]rotaxane NpPmR, as well as its two degenerate analogues PmPmR and NpNpR, were obtained from the corresponding dumbbell-shaped compounds NpPmD, PmPmD, and NpNpD and 1/5DNP38C10 by slippage. Dynamic 1H NMR spectroscopy in CD2Cl2 revealed that shuttling of the 1/5DNP38C10 ring occurs in NpNpR and PmPmR, with activation barriers of 277 K of 14.0 and 10.9 kcal mol(-1), respectively, reflecting a much more pronounced donor-acceptor stabilizing interaction involving the NpI units over the PmI ones. The photophysical and electrochemical properties of the three neutral [2]rotaxanes and their dumbbell-shaped precursors have also been investigated in CH2Cl2. Interactions between 1/5DNP38C10 and PmI and NpI units located within the rod section of the dumbbell components of the [2]rotaxane give rise to the appearance of charge-transfer bands, the energies of which correlate with the electron-accepting properties of the two diimide moieties. Comparison between the positions of the visible absorption bands in the three [2]rotaxanes shows that, in NpPmR, the major translational isomer is the one in which 1/5DNP38C10 encircles the NpI unit. Correlations of the reduction potentials for all the compounds studied confirm that, in this non-degenerate [2]rotaxane, one of the translational isomers predominates. Furthermore, after deactivation of the NpI unit by one-electron reduction, the 1/5DNP38C10 macrocycle moves to the PmI unit. Li+ ions have been found to strengthen the interaction between the electron-donating crown ether and the electron-accepting diimide units, particularly the PmI one. Titration experiments show that two Li+ ions are involved in the strengthening of the donor-acceptor interaction. Addition of Li+ ions to NpPmR induces the 1/5DNP38C10 macrocycle to move from the NpI to the PmI unit. The Li+-ion-promoted switching of NpPmR in a 4:1 mixture of CD2Cl2 and CD3COCD3 has also been shown by 1H NMR spectroscopy to involve the mechanical movement of the 1/5DNP38C10 macrocycle from the NpI to the PmI unit, a process that can be reversed by adding an excess of [12]crown-4 to sequester the Li+ ions.

6.
J Am Chem Soc ; 126(32): 9884-5, 2004 Aug 18.
Article in English | MEDLINE | ID: mdl-15303838

ABSTRACT

Two switchable neutral bistable [2]rotaxanes have been synthesized, and their chemically induced mechanical switching has been studied in solution by 1H NMR spectroscopy. One of the rotaxanes was prepared by a thermodynamically controlled slippage mechanism, while the other rotaxane was obtained by a dynamic covalent chemistry protocol involving the assembly of its dumbbell component by olefin metathesis. The recognition sites present in the rod section of the dumbbell component, namely, naphthodiimide (NpI) and pyromellitic diimide (PmI) residues, were chosen in the knowledge that the ring component, 1,5-dinaphtho[38]crown-10 (1/5DNP38C10), will bind preferentially to the NpI site. However, upon introduction of Li+ ions into the solution, a 1:2 complex is formed between the PmI site, encircled by the 1/5DNP38C10 ring and two Li+ ions. Since this complex is more stable overall than the binding between the 1/5DNP38C10 ring and the NpI site, the ring component moves from the NpI site to the PmI one. This mechanical movement can be reversed by adding an excess of [12]crown-4 to the solution to act as a sequestering agent for the Li+ ions.

7.
Chemistry ; 10(10): 2555-64, 2004 May 17.
Article in English | MEDLINE | ID: mdl-15146527

ABSTRACT

Six different degenerate [2]rotaxanes were synthesized and characterized. The rotaxanes contained either two tetrathiafulvalene (TTF) units or two 1,5-dioxynaphthalene (DNP) ring systems, both of which serve as recognition sites for a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring. Three different spacer units were incorporated into the dumbbell components of the [2]rotaxanes between the recognition sites. They include a polyether chain, a terphenyl unit, and a diphenyl ether linker, all of which were investigated in order to probe the effect of the spacers on the rate of the shuttling process. Data from dynamic 1H NMR spectroscopy revealed a relatively small difference in the DeltaG++ values for the shuttling process in the [2]rotaxanes containing the three different spacers, in contrast to a large difference between the TTF-containing rotaxanes (18 kcal mol(-1)) and the DNP-containing rotaxanes (15 kcal mol(-1)). This 3 kcal mol(-1) difference is predominantly a result of a ground-state effect, reflecting the much stronger binding of TTF units to the CBPQT4+ ring in comparison with DNP ring systems. An examination of the enthalpic (DeltaH++) and entropic (DeltaS++) components for the shuttling process in the DNP-containing rotaxanes revealed significant differences between the three spacers, a property which could be important in designing new molecules for incorporation into molecular electronic and nanoelectromechanical (NEMs) devices.


Subject(s)
Heterocyclic Compounds/chemistry , Naphthalenes/chemistry , Rotaxanes/chemical synthesis , Kinetics , Magnetic Resonance Spectroscopy , Molecular Structure , Nanotechnology/methods , Rotaxanes/chemistry , Thermodynamics
8.
Org Lett ; 6(7): 1095-8, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15040731

ABSTRACT

A [2]catenane in which the macrocyclic polyether, bisparaphenylene[34]crown-10, is interlocked with the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), is shown by dynamic (1)H NMR spectroscopy, using (i). neutral and (ii). anionic chiral shift reagents (CSRs), to exist at low temperatures (197 K) in acetone-d(6) solutions as 1:1 and 2:1 mixtures of diastereoisomeric complexes and salts, respectively, as a consequence of the helical chirality associated with the [2]catenane interacting with the CSRs.

9.
Chemistry ; 10(1): 155-72, 2004 Jan 05.
Article in English | MEDLINE | ID: mdl-14695561

ABSTRACT

With the fabrication of molecular electronic devices (MEDs) and the construction of nanoelectromechanical systems (NEMSs) as incentives, two constitutionally isomeric, redox-controllable [2]rotaxanes have been synthesized and characterized in solution. Therein, they both behave as near-perfect molecular switches, that is, to all intents and purposes, these two rotaxanes can be switched precisely by applying appropriate redox stimuli between two distinct chemomechanical states. Their dumbbell-shaped components are composed of polyether chains interrupted along their lengths by i) two pi-electron rich recognition sites-a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) moiety-with ii) a rigid terphenylene spacer placed between the two recognition sites, and then terminated by iii) a hydrophobic tetraarylmethane stopper at one end and a hydrophilic dendritic stopper at the other end of the dumbbells, thus conferring amphiphilicity upon these molecules. A template-directed protocol produces a means to introduce the tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), which contains two pi-electron accepting bipyridinium units, mechanically interlocked around the dumbbell-shaped components. Both the TTF unit and the DNP moiety are potential stations for CBPQT(4+), since they can establish charge-transfer and hydrogen bonding interactions with the bipyridinium units of the cyclophane, thereby introducing bistability into the [2]rotaxanes. In both constitutional isomers, (1)H NMR and absorption spectroscopies, together with electrochemical investigations, reveal that the CBPQT(4+) ring is predominantly located on the TTF unit, leading to the existence of a single translational isomer (co-conformation) in both cases. In addition, a model [2]rotaxane, incorporating hydrophobic tetraarylmethane stoppers at both ends of its dumbbell-shaped component, has also been synthesized as a point of reference. Molecular synthetic approaches were used to construct convergently the dumbbell-shaped compounds by assembling progressively smaller building blocks in the shape of the rigid spacer, the TTF unit and the DNP moiety, and the hydrophobic and hydrophilic stoppers. The two amphiphilic bistable [2]rotaxanes are constitutional isomers in the sense that, in one constitution, the TTF unit is adjacent to the hydrophobic stopper, whereas in the other, it is next to the hydrophilic stopper. All three bistable [2]rotaxanes have been isolated as green solids. Electrospray and fast atom bombardment mass spectra support the gross structural assignments given to all three of these mechanically interlocked compounds. Their photophysical and electrochemical properties have been investigated in acetonitrile. The results obtained from these investigations confirm that, in all three [2]rotaxanes, i) the CBPQT(4+) cyclophane encircles the TTF unit, ii) the CBPQT(4+) cyclophane shuttles between the TTF and DNP stations upon electrochemical or chemical oxidation/reduction of the TTF unit, and iii) folded conformations are present in which the CBPQT(4+) cyclophane, while encircling the TTF unit, interacts through its pi-accepting bipyridinium exteriors with other pi-donating components of the dumbbells, especially those located within the stoppers.

10.
Chemistry ; 9(19): 4611-25, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-14566866

ABSTRACT

A [2]pseudorotaxane, based on a semi-dumbbell-shaped component containing asymmetrically substituted monopyrrolotetrathiafulvalene and 1,5-dioxynaphthalene recognition sites for encirclement by cyclobis(paraquat-p-phenylene) and with a "speed bump" in the form of a thiomethyl group situated between the two recognition sites, has been self-assembled. This supramolecular entity is a mixture in solution of two slowly interconverting [2]pseudorotaxanes, one of which is on the verge of being a [2]rotaxane at room temperature, allowing it to be isolated by employing flash column chromatography. These two [2]pseudorotaxanes were both characterized in solution by UV/Vis and (1)H NMR spectroscopies (1D and 2D) and also by differential pulse voltammetry. The spectroscopic and electrochemical data reveal that one of the complexes behaves wholly as a [2]pseudorotaxane, while the other has some [2]rotaxane character to it. The kinetics of the shuttling of cyclobis(paraquat-p-phenylene) between the monopyrrolotetrathiafulvalene and the 1,5-dioxynaphthalene recognition sites have been investigated at different temperatures. The shuttling processes, which are accompanied by detectable color changes, can be monitored using UV/Vis and (1)H NMR spectroscopies; the spectroscopic data have been employed in the determination of the rate constants, free energies of activation, enthalpies of activation, and the entropies of activation for the translation of cyclobis(paraquat-p-phenylene) between the two recognition sites.


Subject(s)
Rotaxanes/chemistry , Electrochemistry/methods , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Paraquat/analogs & derivatives , Spectrophotometry, Ultraviolet , Temperature , Thermodynamics
12.
Chemistry ; 9(2): 543-56, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12532304

ABSTRACT

The template-directed syntheses, employing bisparaphenylene-[34]crown-10 (BPP34C10), 1,5-dinaphthoparaphenylene-[36]crown-10 (1/5NPPP36C10), and 1,5-dinaphtho-[38]crown-10 (1/5DNP38C10) as templates, of three [2]catenanes, whereby one of the two bipyridinium units in cyclobis(paraquat-p-phenylene) is replaced by a bipicolinium unit, are described. The crude reaction mixtures comprising the [2]catenanes all contain slightly more of the homologous [3]catenanes, wherein a "dimeric" octacationic cyclophane has the crown ether macrocycles encircling the alternating bipyridinium units with the bipicolinium units completely unfettered. X-ray crystallography, performed on all three [2]catenanes and two of the three [3]catenanes reveals co-conformational and stereochemical preferences that are stark and pronounced. Both the [3]catenanes crystallize as mixtures of diastereoisomers on account of the axial chirality associated with the picolinium units in the solid state. Dynamic (1)H NMR spectroscopy is employed to probe in solution the relative energy barriers for rotations by the phenylene and pyridinium rings in the tetracationic cyclophane component of the [2]catenanes. Where there are co-conformational changes that are stereochemically "allowed", crown ether circumrotation and rocking processes are also investigated for the relative rates of their occurrence. The outcome is one whereby the three [2]catenanes containing BPP34C10, 1/5NPPP36C10, and 1/5DNP38C10 exist as one major enantiomeric pair of diastereoisomers amongst two, four, and eight diastereoisomeric pairs of enantiomers, respectively. The diastereoisomerism is a consequence of the presence of axial chirality together with helical and/or planar chirality in the same interlocked molecule. These [2]catenanes constitute a rich reserve of new stereochemical types that might be tapped for their switching and mechanical properties.

13.
Chemphyschem ; 4(12): 1335-9, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-14714382

ABSTRACT

This article describes two-terminal molecular switch tunnel junctions (MSTJs) which incorporate a semiconducting, single-walled carbon nanotube (SWNT) as the bottom electrode. The nanotube interacts noncovalently with a monolayer of bistable, nondegenerate [2]catenane tetracations, self-organized by their supporting amphiphilic dimyristoylphosphatidyl anions which shield the mechanically switchable tetracations from a two-micrometer wide metallic top electrode. The resulting 0.002 micron 2 area tunnel junction addresses a nanometer wide row of approximately 2000 molecules. Active and remnant current-voltage measurements demonstrated that these devices can be reconfigurably switched and repeatedly cycled between high and low current states under ambient conditions. Control compounds, including a degenerate [2]catenane, were explored in support of the mechanical origin of the switching signature. These SWNT-based MSTJs operate like previously reported silicon-based MSTJs, but differently from similar devices incorporating bottom metal electrodes. The relevance of these results with respect to the choice of electrode materials for molecular electronics devices is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...