Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 6(8): 883-93, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17668119

ABSTRACT

A study has been made of the fluorescence of poly d(G-m5C).poly d(G-m5C), a synthetic double-stranded DNA, in buffered neutral aqueous solution at room temperature, excited by synchrotron radiation at 280 nm and 250 nm and by a frequency-doubled pulse dye laser at 290 nm. Exciting at 280 nm, the B form shows a uni-modal UV spectrum with lambdaf(max) approximately 340 nm. The Z form has in addition a visible emission lambdaf(max) at 450 nm. The spectral positions remain unchanged on exciting at 250 nm but the relative intensities change considerably. Decay profiles have been obtained at 360 nm and 450 nm for both the B and Z forms and have been analyzed by fitting to a pseudo-continuous distribution of 100 (and occasionally 200) exponentials, ranging from 10 ps to 20 ns, by optimizing the 'entropy' of the signal (the method of maximum entropy). We find the mean lifetimes for both wavelengths of emission and for both structural forms fall into three well-separated regions in the ranges indicated tau1 approximately 0.04-0.21 ns, tau2 approximately 0.9-1.26 ns, and tau3 approximately 5.1-6.5 ns. The UV emission, from its spectral position and half-width, correlates with monomeric emission from m5C (and from C for poly d(G-C)). However the lifetime tau1 is approximately 2 orders of magnitude longer than the monomers and points to an involvement of protonated guanosine (GH+, tauf approximately 200 ps) in the overall absorption/emission sequence. In the UV the tau3 emission is predominant, with fractional time-integrated emission approximately 86% for B DNA and approximately 64% for Z. We suggest it results from exciton (stacked) absorption followed by dissociative emission. For Z DNA the visible (450 nm) emission is dominated by a tau3 species (approximately 91%) with a lifetime of 6.5 ns and we suggest it represents a hetero-excimer emission consequent upon absorption by the strongly overlapped base-stacking, which differs from that in B DNA. The weak emission corresponding to tau2 is made more apparent by scanned gated detection of the emission from laser excitation (290 nm) of single-crystal d(m5C-G)3. A central role is attributed to the tight stacking of the bases in the Z form which correlates with enhanced hypochromism at 250 nm vs. 280 nm and with the reversal of the fluorescence intensity ratios UV-visible between these wavelengths.


Subject(s)
DNA/chemistry , Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
2.
Free Radic Biol Med ; 40(3): 407-19, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16443155

ABSTRACT

Reactive oxygen species generated by photosensitizers are efficacious remedy for tumor eradication. Eleven cycloimide derivatives of bacteriochlorin p (CIBCs) with different N-substituents at the fused imide ring and various substituents replacing the 3-acetyl group were evaluated as photosensitizers with special emphasis on structure-activity relationships. The studied CIBCs absorb light within a tissue transparency window (780-830 nm) and possess high photostability at prolonged light irradiation. The most active derivatives are 300-fold more phototoxic toward HeLa and A549 cells than the clinically used photosensitizer Photogem due to the substituents that improve intracellular accumulation (distribution ratio of 8-13) and provide efficient photoinduced singlet oxygen generation (quantum yields of 0.54-0.57). The substituents predefine selective CIBC targeting to lipid droplets, Golgi apparatus, and lysosomes or provide mixed lipid droplets and Golgi apparatus localization in cancer cells. Lipid droplets and Golgi apparatus are critically sensitive to photoinduced damage. The average lethal dose of CIBC-generated singlet oxygen per volume unit of cell was estimated to be 0.22 mM. Confocal fluorescence analysis of tissue sections of tumor-bearing mice revealed the features of tissue distribution of selected CIBCs and, in particular, their ability to accumulate in tumor nodules and surrounding connective tissues. Considering the short-range action of singlet oxygen, these properties of CIBCs are prerequisite to efficient antitumor photodynamic therapy.


Subject(s)
Leukemia P388 , Photochemotherapy , Photosensitizing Agents/pharmacokinetics , Porphyrins/pharmacokinetics , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Female , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , HeLa Cells/drug effects , HeLa Cells/metabolism , Humans , Lethal Dose 50 , Leukemia P388/drug therapy , Leukemia P388/metabolism , Leukemia P388/pathology , Lipids , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Singlet Oxygen/metabolism , Tissue Distribution
3.
J Photochem Photobiol B ; 82(1): 28-36, 2006 Jan 02.
Article in English | MEDLINE | ID: mdl-16236520

ABSTRACT

Photosensitizers 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 (HPC) and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester (MMC) absorb at 711 nm and possess high photoinduced cytotoxicity in vitro. Here we report, that photodynamic therapy with HPC and MMC provide considerable antitumor effect in mice bearing subcutaneous P338 lymphoma. The highest antitumor effect was achieved at a dose of 4 micromol/kg when 1.5 h delay between dye injection and light irradiation (drug-light interval) was used. According to the confocal spectral imaging studies of tissue sections this drug-light interval corresponds to a maximum of tumor accumulation of MMC and HPC (tumor to skin accumulation ratio is 8-10). Short (15 min) drug-light interval can be used for efficient vasculature-targeted photodynamic therapy with HPC at a dose of 1 micromol/kg, whereas MMC is ineffective at the short drug-light interval. Relationships between the features of tissue distribution and efficacy of photodynamic therapy at different drug-light intervals are discussed for HPC and MMC.


Subject(s)
Photosensitizing Agents/pharmacokinetics , Porphyrins/pharmacokinetics , Tissue Distribution/drug effects , Tissue Distribution/radiation effects , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Female , Mice , Microscopy, Confocal , Photochemotherapy , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Structure-Activity Relationship , Time Factors , Tissue Distribution/physiology
4.
J Photochem Photobiol B ; 75(1-2): 81-7, 2004 Jul 19.
Article in English | MEDLINE | ID: mdl-15246354

ABSTRACT

Metal-free sulfonated phthalocyanine with the average number of sulfonate groups per molecule 2.4 (H(2)PcS(2.4)) was recently proved to be an efficient photosensitizer for the photodynamic therapy. Fluorescence spectral imaging microscopy was applied here to study localization and relative concentration of H(2)PcS(2.4) with micron-scale resolution in subcutaneously transplanted murine tumors: Ehrlich mammary gland carcinoma (EC), Lewis lung carcinoma (LLC), P388 lymphoid leukemia (P388) and B16 melanoma (B16). The study of cryogenic tissue sections prepared 24 h after H(2)PcS(2.4) intravenous injection revealed that H(2)PcS(2.4) was present in all tissue structures in the monomeric photoactive state. The preferential accumulation of H(2)PcS(2.4) was documented in tumor cells and adjacent non-tumor tissues (skin structures, fatty tissue, connective tissue enriched in fibrous component and infiltrated with fibroblasts and macrophages) for all the studied tumor models. P388 and B16 were stained with H(2)PcS(2.4) less than adjacent skin structures, whereas EC and LLC accumulated H(2)PcS(2.4) alike or higher than particular skin structures. Staining of EC and LLC was similar and ca. 1.4 and 2 times higher than that of B16 and P388, respectively, thus revealing the differences in ability of particular tumor strains to H(2)PcS(2.4) accumulation. The H(2)PcS(2.4) concentration in remote healthy tissues (skin, muscles and connective tissue) was 2-3 times lower as compared with the analogous tissue structures from the tumor area, whereas subcutaneous fatty tissue staining did not depend on the tissue-to-tumor distance. The tissue distribution of H(2)PcS(2.4) predefines the combined action of two photodynamic damage mechanisms: eradication of tumor due to the direct tumor cell destruction and suppression of tumor growth due to the injury of growth supporting system.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Lewis Lung/metabolism , Indoles/pharmacokinetics , Leukemia, Lymphoid/metabolism , Melanoma, Experimental/metabolism , Photosensitizing Agents/pharmacokinetics , Animals , Female , Indoles/chemical synthesis , Injections, Intravenous , Isoindoles , Metals , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Tissue Distribution
5.
Photochem Photobiol ; 79(2): 172-88, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15068030

ABSTRACT

Comparative study of 13,15-[N-(2-hydroxyethyl)]cycloimide chlorin p6 (2), 13,15-(N-acetoxy)cycloimide chlorin p6 (3), 13,15-(N-hydroxy)cycloimide chlorin p6 methyl ester (4) and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester (5) together with the previously investigated 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 (1) was performed. The dependence of the key photodynamic properties of 1-5 on the introduced substituents was analyzed. The photoinduced cell-killing activity of 4 is 100- and 280-fold higher than that of chlorin p6 and Photogem, respectively, as estimated on A549 human lung adenocarcinoma cells. The activity is reduced eight times in the order 4 > 5 > 1 > 2 > 3. The intracellular accumulation of 1-5 occurs in cytoplasm in a monomeric form bound to the lipids of cellular membranes. This form of 1, 2, 3, 4 and 5 is characterized by the high quantum yield of singlet oxygen generation, which depends on the introduced substituents, 0.66, 0.59, 0.35, 0.51 and 0.73, respectively. The photostability is two-fold less for 1 and four-fold less for 2, 3 and 5 than for 4. The rates of cellular uptake and efflux of 1-5 vary widely, thus providing the way to optimize the pharmacological properties of the photosensitizer (PS) using the respective substituents. Modifying the substituents, 1-5 were targeted to different cellular organelles. The enhanced accumulation in the Golgi apparatus and mitochondria complemented with diffuse staining of intracellular membranous structures is a property of 1-4. Compound 5 accumulates selectively in the lipid droplets and stains weakly perinuclear structures. Temperature-sensitive mechanisms of transport are responsible for the 1-4 uptake. Diffusion can play a role in the internalization of 5 but not of 1-4. Endocytosis via caveolae, clathrin-dependent and adenosine triphosphate-dependent pathways are not noticeably involved in the 1-5 internalization. Independently from their intracellular localization 1, 4 and 5 are highly efficient near-IR PS, which induce predominantly an apoptotic type of cell death under conditions providing ca 50% level of phototoxicity and necrosis at the 100% level of phototoxicity.


Subject(s)
Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Biological Transport , Cell Death , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Dose-Response Relationship, Drug , Humans , Photochemotherapy , Photosensitizing Agents/toxicity , Porphyrins/analysis , Porphyrins/toxicity , Reactive Oxygen Species/metabolism , Solubility , Spectrometry, Fluorescence , Staining and Labeling , Structure-Activity Relationship , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Subcellular Fractions/pathology , Temperature
6.
J Gene Med ; 4(5): 548-59, 2002.
Article in English | MEDLINE | ID: mdl-12221648

ABSTRACT

BACKGROUND: The weak efficiency of plasmid transfer into the cytosol remains one of the major limiting factors to achieve an efficient transfection with DNA/cationic polymer complexes. We found that divalent metal Zn2+ can improve the polyfection efficiency, especially with DNA/histidylated polylysine (His-pLK) complexes. METHODS AND RESULTS: The supplementation of the transfection medium with 250 micro M ZnCl2 increased the polyfection of human hepatocarcinoma (HepG2) cells with a plasmid encoding EGFP complexed with pLK, polyethyleneimine and His-pLK. Zn2+ is more efficient on DNA/His-pLK complexes: the number of EGFP-positive cells increased from 1% to more than 40%. This phenomenon is selective to Zn2+ because no effect was obtained with other divalent cations. The effect of zinc varies from cell to cell. The binding of Zn2+ to histidyl residues might increase zinc endosomal concentration favoring membrane fusion. Flow cytometry and confocal microscopy studies clearly indicate that with His-pLK, the plasmid is better delivered in the cytosol as well as in the cell nucleus in zinc-treated cells. An investigation conducted with the histidine-rich peptide H5WYG showed that zinc inhibits membrane permeabilization but promotes membrane fusion as evidenced by resonance energy transfer. CONCLUSIONS: Data reported here imply that the addition of zinc ions in the transfection medium can trigger an increase of the fusion of endosomes containing polyplexes which is more effective in the presence of histidine-rich molecules. Consequently, the amount of plasmid in the cytosol available to reach the nucleus is increased leading to an improvement of polyfection.


Subject(s)
DNA/metabolism , Gene Transfer Techniques , Genetic Vectors/metabolism , Polylysine/metabolism , Zinc/metabolism , Carcinoma, Hepatocellular/therapy , Cell Nucleus/metabolism , Chlorides/metabolism , Cytoplasm/metabolism , Histidine/metabolism , Humans , Liposomes/metabolism , Peptides/metabolism , Zinc Compounds/metabolism
7.
Photochem Photobiol ; 75(6): 633-43, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12081326

ABSTRACT

The 13,15-N-(3'-hydroxypropylcycloimide) chlorin p6 (CIC), which absorbs at 711 nm, possesses considerable photoinduced cell-killing activity. It is 43-, 61- and 110-fold more active than chlorin p6, 3-formyl-3-devinyl chlorin p6 and Photogem, respectively, and has no cytotoxicity without irradiation as estimated on A549 human adenocarcinoma cells. To attain the highest intracellular penetration and activity the monomeric form of CIC should be stabilized. This stabilization in an aqueous environment can be achieved using 0.002-0.005% of Cremophor EL emulsion (polyoxyethylene derivative of hydrogenated castor oil). The intracellular accumulation of CIC occurs in cytoplasm in a monomeric form bound to cellular membranes. This form of the dye is characterized by a high quantum yield of singlet oxygen generation (0.66 +/- 0.02). Besides diffuse staining of intracellular membranous structures, CIC accumulates 3- to 4-fold more intensely in mitochondria and Golgi apparatus, thus indicating these organelles to be the initial targets of its photodynamic action. The incubation time providing 50% accumulation level of CIC in cells is 30 +/- 5 min. The time for 50% release of CIC from the cells is 60 +/- 10 min. A 10-fold decrease in CIC intracellular penetration at 22 degrees C proves that temperature-sensitive mechanisms of transport, rather than diffusion, are responsible for the dye uptake. The average cytoplasmic concentration of CIC was seven times the extracellular concentration in the 0.2-1.6 microM range, used for the photodynamic activity measurements. The concentration of CIC and the light dose that correspond to ca 50% level of phototoxicity induce predominantly an apoptotic-type of cell death, whereas the conditions providing 100% level of phototoxicity induced necrosis. The results obtained indicate that cycloimide derivatives of chlorin p6 may serve as a base for the development of an efficient near-IR photosensitizer.


Subject(s)
Photosensitizing Agents/chemistry , Porphyrins/chemistry , Models, Molecular , Molecular Structure , Spectrophotometry, Infrared
8.
Photochem Photobiol ; 75(5): 527-33, 2002 May.
Article in English | MEDLINE | ID: mdl-12017480

ABSTRACT

It is generally assumed that a central metal is essential for the efficiency of phthalocyanines in photodynamic therapy (PDT) of cancer. Contrary to the set opinion, the results of the present study indicate that the metal-free sulfonated phthalocyanines (H2PcSn, where n is the number of sulfonate groups per molecule) possess a considerable photoactivity. The relative phototoxicities of H2PcS1.5, H2PcS2.4, H2PcS3.1 and H2PcS3.8 on HEp2 human epidermoid carcinoma cells were 3.3, 20, 3.3 and 1, respectively, thus demonstrating dependence of the activity on the sulfonation degree, known for metallo-PcSn. A significant delay in tumor growth and a decrease in tumor regrowth rate were observed in mice after PDT with H2PcS2.4. The antitumor effect declined in the order H2PcS2.4 > H2PcS3.1 > H2PcS1.5 and vanished for H2PcS3.8. We demonstrate here that the high photodynamic activity of H2PcS2.4 can be explained by its physicochemical properties in living cells and tissues. Thus, H2PcSn (n is about 2) can be considered as a new alternative in PDT of light-accessible neoplasms and further clinic-oriented studies are warranted.


Subject(s)
Antineoplastic Agents/toxicity , Indoles/toxicity , Metals/toxicity , Photochemotherapy , Animals , Cell Division/drug effects , Humans , Isoindoles , Lymphoma , Radiation-Sensitizing Agents/toxicity , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
9.
Photochem Photobiol ; 75(3): 201-10, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11950085

ABSTRACT

The fluorescence properties of thiazole orange, linked via a (1) hydrophobic alkyl or a (2) hydrophilic ethylene glycol chain to the central internucleotidic phosphate group of a pentadeca-2'-deoxyriboadenylate (dA15), are evaluated. Linkage at the phosphate group yields two stereoisomers, S-isomer of the phosphorus chiral center (Sp) and R-isomer of the phosphorus chiral center (Rp); these are studied separately. The character of the linkage chain and the chirality of the internucleotidic phosphate linkage site influence the fluorescent properties of these thiazole orange-oligonucleotide conjugates (TO-probes). Quantum yields of fluorescence (phifl) of between 0.04 and 0.07 were determined for the single-stranded conjugates. The fluorescence yield increased by up to five times upon hybridization with the complementary sequence (d5'[CACT15CAC3']); (phifl values of between 0.06-0.35 were determined for the double-stranded conjugates. The phifl value (0.17) of thiazole orange, 1-(N,N'-trimethylaminopropyl)-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene]-quinolinium iodide (TO-Pro 1) in the presence of the oligonucleotide duplex (TO-Pro 1: dA15.d5'[CACT15CAC3'] (1:1)) is much less than that for some of the hybrids of the conjugates. Our studies, using steady-state and time-resolved fluorescence experiments, show that a number of discrete fluorescent association species between the thiazole orange and the helix are formed. Time-resolved studies on the four double-stranded TO-probes revealed that the fluorescent oligonucleotide-thiazole orange complexes are common, only the distribution of the species varies with the character of the chain and the chirality at the internucleotidic phosphate site. Those TO-probes in which the isomeric structure of the phosphate-chain linkage is Rp, and therefore such that the fluorophore is directed toward the minor groove, have higher phifl values than the Sp isomer. Of the systems studied, thiazole orange linked by an alkyl chain to the internucleotidic phosphate (Rp isomer) has the highest phifl and the greatest fraction of the longest-lived fluorescent thiazole orange species (in the hybrid form).


Subject(s)
Fluorescent Dyes/chemistry , Oligonucleotides/chemistry , Thiazoles/chemistry , Benzothiazoles , Quinolines
SELECTION OF CITATIONS
SEARCH DETAIL
...