Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 942: 173342, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848911

ABSTRACT

The climate change scenarios RCP 4.5 and RCP 8.5, with a representative concentration pathway for stabilization of radiative forcing of 4.5 W m-2 and 8.5 W m-2 by 2100, respectively, predict an increase in temperature of 1-4.5° Celsius for Europe and a simultaneous shift in precipitation patterns leading to increased drought frequency and severity. The negative consequences of such changes on tree growth on dry sites or at the dry end of a tree species distribution are well-known, but rarely quantified across large gradients. In this study, the growth of Quercus robur and Quercus petraea (Q. spp.) and Pinus sylvestris in pure and mixed stands was predicted for a historical scenario and the two climate change scenarios RCP 4.5 and RCP 8.5 using the individual tree growth model PrognAus. Predictions were made along an ecological gradient ranging from current mean annual temperatures of 5.5-11.4 °C and with mean annual precipitation sums of 586-929 mm. Initial data for the simulation consisted of 23 triplets established in pure and mixed stands of Q. spp. and P. sylvestris. After doing the simulations until 2100, we fitted a linear mixed model using the predicted volume in the year 2100 as response variable to describe the general trends in the simulation results. Productivity decreased for both Q. spp. and P. sylvestris with increasing temperature, and more so, for the warmer sites of the gradient. P. sylvestris is the more productive tree species in the current climate scenario, but the competitive advantage shifts to Q. spp., which is capable to endure very high negative water potentials, for the more severe climate change scenario. The Q. spp.-P. sylvestris mixture presents an intermediate resilience to increased scenario severity. Enrichment of P. sylvestris stands by creating mixtures with Q. spp., but not the opposite, might be a right silvicultural adaptive strategy, especially at lower latitudes. Tree species mixing can only partly compensate productivity losses due to climate change. This may, however, be possible in combination with other silvicultural adaptation strategies, such as thinning and uneven-aged management.

2.
Sci Rep ; 14(1): 10611, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38719887

ABSTRACT

Forest growth varies across landscapes due to the intricate relationships between various environmental drivers and forest management. In this study, we analysed the variation of tree growth potential across a landscape scale and its relation to soil moisture. We hypothesised that soil moisture conditions drive landscape-level variation in site quality and that intermediate soil moisture conditions demonstrate the highest potential forest production. We used an age-independent difference model to estimate site quality in terms of maximum achievable tree height by measuring the relative change in Lorey's mean height for a five year period across 337 plots within a 68 km2 boreal landscape. We achieved wall-to-wall estimates of site quality by extrapolating the modelled relationship using repeated airborne laser scanning data collected in connection to the field surveys. We found a clear decrease in site quality under the highest soil moisture conditions. However, intermediate soil moisture conditions did not demonstrate clear site quality differences; this is most likely a result of the nature of the modelled soil moisture conditions and limitations connected to the site quality estimation. There was considerable unexplained variation in the modelled site quality both on the plot and landscape levels. We successfully demonstrated that there is a significant relationship between soil moisture conditions and site quality despite limitations associated with a short study period in a low productive region and the precision of airborne laser scanning measurements of mean height.


Subject(s)
Soil , Trees , Soil/chemistry , Trees/growth & development , Water , Forests , Taiga
SELECTION OF CITATIONS
SEARCH DETAIL
...